【题目】连结圆周上九个不同点的36条弦要么染成红色,要么染成蓝色,我们称它们为“红边”或“蓝边”.假定由这九个点中每三个点为顶点的三角形中都含有“红边”.证明:这九个点中存在四个点,两两连结的六条边都是红边.
【答案】见解析
【解析】
圆周上九个点中任三点均不共线,任四点都是一凸四边形的顶点.设这九个点为,,…,.显然每个都要与其他八个点有边相连.
(1)若存在一点向其他点引出至少四条蓝边,不妨设这四条蓝边为,,,.则,,,,,均为红边.即存在四点,,,,其中每两点连的都是红边(如图).
(2)若每一点向其余点引出的蓝边不多于3条.这时每两点向其余点连的红边至少为5条.如果每一点都恰引出5条红边,则九个点恰引出条红边.这不可能,因为边数必为整数.所以,必存在某个点,比如点,到其他点连的红边至少为6条.不妨设与,,,,,连的,,,,,都是红边,这时五条边,,,,中至少有三条同色.不妨设,,同色.
①若,,同为蓝边,因,,均为红边,此时,,,四点所连六条边均为红边(如图).
②若,,同为红边,则三边依条件不能全是蓝边,即至少有一条红边.不妨设为红边,这时,,,四点所连的六条边均为红边(如图).
综上所述,问题得证.
科目:高中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB= ,AD=2,E,F为线段AB的三等分点,G、H为线段DC的三等分点.将长方形ABCD卷成以AD为母线的圆柱W的半个侧面,AB、CD分别为圆柱W上、下底面的直径.
(Ⅰ)证明:平面ADHF⊥平面BCHF;
(Ⅱ)若P为DC的中点,求三棱锥H—AGP的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. 命题“若,则”的否命题为:“若则”
B. 若为真命题,为假命题,则均为假命题
C. 命题“若成等比数列,则”的逆命题为真命题
D. 命题“若,则”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l方程为(m+2)x﹣(m+1)y﹣3m﹣7=0,m∈R.
(1)求证:直线l恒过定点P,并求出定点P的坐标;
(2)若直线l在x轴,y轴上的截距相等,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是各项均不为的等差数列,公差为,为其前项和,且满足
,.数列满足,为数列的前n项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面上的一列点简记为,若由构成的数列满足,(其中是与轴正方向相同的单位向量),则称为“点列”.
(1)试判断:,...是否为“点列”?并说明理由.
(2)若为“点列”,且点在点的右上方.任取其中连续三点,判断的形状(锐角,直角,钝角三角形),并证明.
(3)若为“点列”,正整数满足:,且,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com