精英家教网 > 高中数学 > 题目详情
5.设z=3x+5y,其中变量x和y满足条件$\left\{{\begin{array}{l}{5x+3y≤15}\\{y≤x+1{\;}^{\;}}\\{x-5y≤3}\end{array}}\right.$,求z的最大值和最小值.

分析 由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案

解答 解:由约束条件$\left\{{\begin{array}{l}{5x+3y≤15}\\{y≤x+1{\;}^{\;}}\\{x-5y≤3}\end{array}}\right.$,得可行域   …(6分)
交点坐标A(-2,-1),…(7分)
由z=3x+5y得$y=-\frac{3}{5}x+\frac{z}{5}$…8
当x=-2,y=-1时,zmin=-11,
当$x=\frac{3}{2},y=\frac{5}{2}$时,zmax=17…(10分)

点评 本题考查线性规划的解得应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是①②④.(把你认为正确结论的序号都写上)
①若f(x1)≤f(x2)对任意实数x恒成立,则x2-x1必定是$\frac{π}{2}$的整数倍;
②y=f(x)的图象关于($\frac{4π}{3}$,0)对称;
③对于函数y=|f(x)|(x∈R)的图象,x=-$\frac{5π}{12}$一定是一条对称轴且相邻两条对称轴之间的距离是$\frac{π}{2}$;
④函数f(x)在每一个[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有严格的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线C1:y2=2px(p>0)的焦点为F,圆C2:x2+y2=4,若C1与C2交于A,B两点,且|AB|=2$\sqrt{3}$,则抛物线C1上的点P(m,3$\sqrt{3}$)到F的距离为(  )
A.$\frac{21}{2}$B.21C.$\frac{39}{2}$D.$\frac{39}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设P为直线l1:x-2y+4=0与直线l:2x-y-4=0的交点,圆C:x2+y2-4x-4y+7=0,l0为过点P且斜率为k的直线,
(1)若k=$\frac{3}{2}$,l0与圆C交于A,B两点,求|AB|;
(2)k为何值时,l0与圆C相切?设切点分别为M,N,求cos∠MPN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.福州为了迎接青运会,计划从2011年到2015年,每年年初投入资金用于更新和改进体育场所与设施,若2011年年初投入a万元,以后每年年初投入的资金比上一年递增10%,则投入的总资金约为(参考数据 1.14≈1.46,1.15≈1.61)(  )
A.4.6a万元B.6.1a万元C.14.6a万元D.16.1a万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.比较大小:2$\sqrt{5}$>$\sqrt{3}$+$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin 20°cos10°+cos20°sin170°=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,点D在边CB的延长线上,且$\overrightarrow{CD}$=4$\overrightarrow{BD}$=r$\overrightarrow{AB}$-s$\overrightarrow{AC}$,r,s∈R,求s+r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某开心农场要用一段长为40m的篱笆,围成一个矩形菜园ABCD,若设菜园的边长AB为xm,菜园的面积为ym2
(1)求y与x之间的函数关系式,写出x的取值范围;
(2)当x为何值时,菜园面积最大?并求出最大值?

查看答案和解析>>

同步练习册答案