【题目】甲乙两地的高速公路全长166千米,汽车从甲地进入该高速公路后匀速行驶到乙地,车速(千米/时).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为,固定部分为220元.
(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?(结果保留整数)
【答案】(1);(2)当时,最小运输成本为696元.
【解析】
(1)由题意可知,汽车的行驶时间为(小时),汽车每小时的运输成本为,从而确定全程运输成本(元)表示为速度(千米/时)的函数关系,即可.
(2)由(1)可知,,根据对号函数,求解即可.
(1)因为汽车从甲地进入该高速公路后匀速行驶到乙地,车速(千米/时).
所以汽车的行驶时间为(小时)
又汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为,固定部分为220元
所以汽车每小时的运输成本为(元)
则全程运输成本
(2) 由(1)可知,
当时,函数单调递减
当时,函数单调递增
所以,当时,全程运输成本取得最小值
即最小运输成本为元.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)线段BC上是否存在点M,使得AE⊥PM?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,为函数的导函数.
(1)若,函数在处的切线方程为,求a、的值;
(2)若曲线上存在两条互相平行的切线,其倾斜角为锐角,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人的正常体温在至之间,下图是一位病人在治疗期间的体温变化图.
现有下述四个结论:
①此病人已明显好转;
②治疗期间的体温极差小于;
③从每8小时的变化来看,25日0时~8时体温最稳定;
④从3月22日8时开始,每8小时量一次体温,若体温不低于就服用退烧药,根据图中信息可知该病人服用了3次退烧药.
其中所有正确结论的编号是( )
A.③④B.②③C.①②④D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足;数列的前项和为,且满足,,.
(1)求数列的通项公式;
(2)求数列的通项公式;
(3)是否存在正整数,使得恰为数列中的一项?若存在,求满足要求的那几项;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com