精英家教网 > 高中数学 > 题目详情
8.已知角α的终边经过点($\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$),则cosα=$\frac{2\sqrt{5}}{5}$.

分析 由题意可得 x=$\frac{2\sqrt{5}}{5}$,y=$-\frac{\sqrt{5}}{5}$,r=$\sqrt{{x}^{2}+{y}^{2}}$=1,由此求得cosα=$\frac{x}{r}$ 的值.

解答 解:∵角α的终边经过点($\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$),
∴x=$\frac{2\sqrt{5}}{5}$,y=$-\frac{\sqrt{5}}{5}$,
∴r=$\sqrt{{x}^{2}+{y}^{2}}$=1,
∴cosα=$\frac{x}{r}$=x=$\frac{2\sqrt{5}}{5}$,
故答案为:$\frac{2\sqrt{5}}{5}$

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,且AC=AA1
(1)求证:BC1⊥平面AC B1
(2)求二面角B-AB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若C9x-2=C92x-1,则x=(  )
A.-1B.4C.-1或4D.1或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中a1=$\frac{1}{2}$,函数f(x)=$\frac{2x}{1+x}$.
(1)若正项数列{an}满足an+1=f(an),试求出a2,a3,a4,由此归纳出通项an,并加以证明;
(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}的前项和为Tn,且bn=$\frac{{a}_{n}}{{2}^{n}+1}$,求证:Tn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.统计某校1000名学生的数学水平测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是80%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.2015年某企业员工有500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.现在要从年龄较小的第1,3,4组中用分层抽样的方法抽取16人,则在第4组抽取的人数为(  )
A.3B.6C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-π<φ<π)的部分图象如图所示,为了得到g(x)=$\sqrt{3}$cos(ωx+$\frac{φ}{2}$)的图象,只需将f(x)的图象(  )
A.向左平移$\frac{5π}{12}$个单位长度B.向左平移$\frac{5π}{6}$个单位长度
C.向右平移$\frac{5π}{12}$个单位长度D.向右平移$\frac{5π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=ln(x+1)+2x-m(m∈R)的一个零点附近的函数值的参考数据如表:
x00.50.531250.56250.6250.751
f(x)-1.307-0.084-0.0090.0660.2150.5121.099
由二分法,方程ln(x+1)+2x-m=0的近似解(精确度0.05)可能是(  )
A.0.625B.-0.009C.0.5625D.0.066

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.平面上三个力$\overrightarrow{F_1}$、$\overrightarrow{F_2}$、$\overrightarrow{F_3}$作用于一点且处于平衡状态,$|\overrightarrow{F_1}|=1N$,$|\overrightarrow{F_2}|=\frac{{\sqrt{6}+\sqrt{2}}}{2}N$,$\overrightarrow{F_1}$与$\overrightarrow{F_2}$的夹角为45°,则$|\overrightarrow{F_3}|$=1+$\sqrt{3}$N.

查看答案和解析>>

同步练习册答案