精英家教网 > 高中数学 > 题目详情

(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4。现从盒子中随机抽取卡片.
(I)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(II)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.

(Ⅰ)P(A)=0.5;(Ⅱ)P(B)=

解析试题分析:(Ⅰ)由题意知本题是一个古典概型,
设A表示事件“抽取3张卡片上的数字之和大于7”,  ……1分
∵任取三张卡片,三张卡片上的数字全部可能的结果是{(1、2、3),(1、2、4),(1、3、4),(2、3、4)}共4个,        ……3分
其中数字之和大于7的是(1、3、4),(2、3、4),∴P(A)=0.5    ……5分
(Ⅱ)设B表示事件“至少一次抽到3”,  ……6分
∵每次抽1张,连续抽取两张全部可能的基本结果有:
(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16个.    ……8分
事件B包含的基本结果有(1、3)(2、3)(3、1)(3、2)(3、3)(3、4)(4、3),共7个基本结果.∴所求事件的概率为P(B)=       ……10分
考点:本题主要考查古典概型的概率计算。
点评:中档题,古典概型概率的计算,关键是明确基本事件总数及导致事件发生的基本事件数,此类问题,可借助于“树图法”不重不漏地写出各个基本事件。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一袋中有6个黑球,4个白球.
(1)依次取出3个球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球个数X的分布列、期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施.若实施方案一,预计第一年可以使出口额恢复到危机前的1.0倍、0.9倍、0.8倍的概率分别为0.3、0.3、0.4;第二年可以使出口额为第一年的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使出口额恢复到危机前的1.2倍、l.0倍、0.8倍的概率分别为0.2、0.3、0.5;第二年可以使出口额为第一年的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立.令ζ=1,2)表示方案实施两年后出口额达到危机前的倍数。
(Ⅰ)写出的分布列;
(Ⅱ)实施哪种方案,两年后出口额超过危机前出口额的概率更大?
(Ⅲ)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为10万元、15万元、20万元,问实施哪种方案的平均利润更大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设a、b、c分别是先后掷一枚质地均匀的正方体骰子三次得到的点数.
(1)求使函数在R上不存在极值点的概率;
(2)设随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.
罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:
 
(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个盒子中有5只同型号的灯泡,其中有3只合格品,2只不合格品。现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(1)求第一次取到不合格品,且第二次取到的是合格品的概率;
(2)求至少有一次取到不合格品的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(Ⅰ)取到的2只都是次品;    
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为.
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。(本题满分12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一口袋中装有编号为的七个大小相同的小球,现从口袋中一次随机抽取两球,每个球被抽到的概率是相等的,用符号()表示事件“抽到的两球的编号分别为”。
(Ⅰ)总共有多少个基本事件?用列举法全部列举出来;
(Ⅱ)求所抽取的两个球的编号之和大于且小于的概率。

查看答案和解析>>

同步练习册答案