精英家教网 > 高中数学 > 题目详情
椭圆的一个焦点是,那么    .

试题分析:把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值。解:把椭圆方程化为标准方程得: ,因为焦点坐标为(0,2),所以长半轴在y轴上,故答案为1.
点评:本题考查椭圆的标准方程及椭圆的简单性质得运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点MN,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆是其左顶点和左焦点,是圆上的动点,若,则此椭圆的离心率是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。

查看答案和解析>>

同步练习册答案