精英家教网 > 高中数学 > 题目详情

{an}是首项a1=1,公差为d=3的等差数列,如果an=2005,则序号n等于


  1. A.
    667
  2. B.
    668
  3. C.
    669
  4. D.
    670
C
分析:首先由a1和d求出an,然后令an=2005,解方程即可.
解答:∵{an}是首项a1=1,公差d=3的等差数列,
∴an=1+(n-1)×3=3n-2,
∵an=2005,
∴3n-2=2005,
解得n=669.
故选C.
点评:本题主要考查了等差数列的通项公式an=a1+(n-1)d,注意方程思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=1的等比数列,其前n项和Sn中,S3、S4、S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2log
1
2
|an|+1
,求数列{bn}的前n项和为Tn
(3)求满足(1-
1
T2
)(1-
1
T3
)•…•(1-
1
Tn
)>
1013
2013
的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=1的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且把S2=16,b1b3=b4
(1)求数列{an}和数列{bn}的通项公式.
(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k=1,2,3,…,求数列{cn}的前2n+1项和T2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是首项a1=4的等比数列,且4a1,a5,-2a3成等差数列,则其公比为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项a1=1,公差d=3的等差数列,如果an=2005,则序号n等于
669
669

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=1的等比数列,其公比q是方程2x2+3x+1=0的根.
(Ⅰ)求数列{an}的通项公式和前n项和Sn
(Ⅱ)当q≠-1时,设
1
bn
=log
1
2
|an+2|
,若b1b2+b2b3+…+bnbn+1≥λ对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案