精英家教网 > 高中数学 > 题目详情
若函数y=x2-3x-4的定义域为[0,
3
2
]
,则值域为
 
考点:二次函数的性质
专题:函数的性质及应用
分析:通过函数的解析式求出函数的单调区间,从而求出函数的值域.
解答: 解:∵y=x2-3x-4,
∴对称轴x=
3
2

∴函数在[0,
3
2
]递减,
∴f(x)max=f(0)=-4,f(x)min=-
25
4

故答案为:[-
25
4
,-4].
点评:本题考查了二次函数的性质问题,考查了函数的单调性,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
mx
mx-1+m1-x
+a,(a∈R,m>1),且f(0)=a+
2
5

(1)若f(1)=1,求实数a的值并计算f(-1)+f(3)的值;
(2)若不等式f(x)-2>0对任意的x∈[2,+∞)恒成立,求实数a的取值范围;
(3)当a=-1时,设g(x)=f(x+b),是否存在实数b使g(x)为奇函数,若存在,求出b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别是a,b,c,若b2+c2-
2
bc=a2,且
a
b
=
2
,则∠C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax-2的零点有(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x
x+2
,x1=1,xn=f(xn-1)n∈N*且n≥2,计算出x2,x3,x4分别为
2
3
1
2
2
5
,猜想xn等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆方程(x-1)2+(y-1)2=9,过点A(2,3)作圆的任意弦,则中点P的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则对函数y=f(x)有下列判断:
①函数y=f(x)是偶函数;
②对任意的x∈R,都有f(x+2)=f(x-2);
③函数y=f(x)在区间[2,3]上单调递减.
其中判断正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.

查看答案和解析>>

同步练习册答案