精英家教网 > 高中数学 > 题目详情
已知直四棱柱ABCD-A1B1C1D1的底面是菱形,F为棱BB1的中点,M为线段AC1的中点.
求证:
(Ⅰ)直线MF∥平面ABCD;
(Ⅱ)平面AFC1⊥平面ACC1A1
分析:(1)延长C1F交CB的延长线于点N,由三角形的中位线的性质可得MF∥AN,从而证明MF∥平面ABCD.
(2)由A1A⊥BD,AC⊥BD,可得BD⊥平面ACC1A1,由DANB为平行四边形,故NA∥BD,故NA⊥平面ACC1A1,从而证得平面AFC1⊥ACC1A1
解答:(本小题满分12分)
证明:(Ⅰ)延长C1F交CB的延长线于点N,连接AN.因为F是BB1的中点,
所以,F为C1N的中点,B为CN的中点.又M是线段AC1的中点,
故MF∥AN.又MF不在平面ABCD内,AN?平面ABCD,∴MF∥平面ABCD.
(Ⅱ)连BD,由直四棱柱ABCD-A1B1C1D1
可知A1A⊥平面ABCD,又∵BD?平面ABCD,∴A1A⊥BD.
∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,
AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1
在四边形DANB中,DA∥BN且DA=BN,所以四边形DANB为平行四边形,
故NA∥BD,∴NA⊥平面ACC1A1,又因为NA?平面AFC1
∴平面AFC1⊥ACC1A1
点评:本题考查证明线面平行、面面垂直的方法,同时考查了空间想象能力,推理论证的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=AD=1,DD1=CD=2,AB⊥AD.
(I)求证:BC⊥面D1DB;
(II)求D1B与平面D1DCC1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知直四棱柱ABCD-A1B1C1D1中,AD⊥DCAB∥DC,且满足
DC-DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC;
(2)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为4的菱形,∠BAD=60°,AA1=6,P是棱AA1的中点.求:
(1)截面PBD分这个棱柱所得的两个几何体的体积;
(2)三棱锥A-PBD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)已知直四棱柱ABCD-A1B1C1D1体积为32,且底面四边形ABCD为直角梯形,其中上底BC=2,下底AD=6,腰AB=2,且BC⊥AB.
(文科):
(1)求异面直线B1A与直线C1D所成角大小;
(2)求二面角A1-CD-A的大小;
(理科):
(1)求异面直线B1D与直线AC所成角大小;
(2)求点C到平面B1C1D的距离.

查看答案和解析>>

同步练习册答案