精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

(1)当时,处取得极值,求函数的单调区间;

(2)若时,函数有两个不同的零点

①求的取值范围;

②求证:

【答案】(Ⅰ)减区间为,增区间为.(Ⅱ)①②详见解析

【解析】试题分析:(Ⅰ)由极值定义可得,从而可解得.再根据导函数零点讨论导函数符号,结合导函数符号可得函数单调区间,(Ⅱ)①先利用导数分析函数单调性,即函数为非单调函数,导函数必有零点,再根据函数单调变化规律得函数最大值必大于零,又端点函数值趋于负无穷,根据零点存在定理可得函数必有两个零点,最后解最大值大于零时的取值范围,②等价于,由零点条件得,两式相加与相减再相除消去,因此转化为证明,即需证明,令,构造函数,再利用导数研究函数单调性,得,即可得到结论.

试题解析:(Ⅰ)解:由已知得

所以,所以

所以

,由./span>

所以的减区间为,增区间为

(Ⅱ)①解:由已知

所以

时,显然恒成立,此时函数在定义域内递增,至多有一个零点,不合题意.当时,令

所以极大值为,解得

时,时,

所以当时,有两个零点.

②证明:为函数的两个零点,不妨设

所以

两式相减得,两式相加得

要证,即证

即证,即证

,即证

,则

所以,即

所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2015高考四川,文21】已知函数f(x)-2lnx+x2-2ax+a2,其中a>0.

()设g(x)为f(x)的导函数,讨论g(x)的单调性;

()证明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),

(1)求实数的取值范围以及直线的方程;

(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;

(3)已知N(0,3),若圆C上存在两个不同的点P,使,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

.

(1)求

处的切线方程;

(2)令

,求

的单调区间;

(3)若任意

,都有

恒成立,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列

列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为

,记甲通过的关数为

,求

的分布列和数学期望.

参考公式与数据:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列5个命题中正确命题的个数是( )

①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;

②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;

③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为=1.23x+0.08;

④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为

⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医用放射性物质原来质量a每年衰减的百分比相同,衰减一半时,所用时间是10年,根据需要,放射性物质至少要保留原来的,否则需要更换.已知到今年为止,剩余为原来的

(1)求每年衰减的百分比;

(2)到今年为止,该放射性物质衰减了多少年?

(3)今后至多还能用多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数满足,且当时, ,则函数在区间[-7,1]上的零点个数为( )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足对任意,恒有,且不恒为0.

(1)求的值;

(2)试判断的奇偶性,并加以证明;

(3)若,恒有,求满足不等式的取值集合.

查看答案和解析>>

同步练习册答案