【题目】已知函数,其中.
(1)当时,在处取得极值,求函数的单调区间;
(2)若时,函数有两个不同的零点,
①求的取值范围;
②求证:.
【答案】(Ⅰ)减区间为,增区间为.(Ⅱ)①②详见解析
【解析】试题分析:(Ⅰ)由极值定义可得,从而可解得.再根据导函数零点讨论导函数符号,结合导函数符号可得函数单调区间,(Ⅱ)①先利用导数分析函数单调性,即函数为非单调函数,导函数必有零点,再根据函数单调变化规律得函数最大值必大于零,又端点函数值趋于负无穷,根据零点存在定理可得函数必有两个零点,最后解最大值大于零时的取值范围,②等价于,由零点条件得,,两式相加与相减再相除消去得,因此转化为证明,即需证明,令,构造函数,再利用导数研究函数单调性,得,即可得到结论.
试题解析:(Ⅰ)解:由已知得,
所以,所以.
所以.
则,
由得,由得./span>
所以的减区间为,增区间为.
(Ⅱ)①解:由已知.
所以,
当时,显然恒成立,此时函数在定义域内递增,至多有一个零点,不合题意.当时,令得,
令得;
令得.
所以极大值为,解得.
且时,,时,.
所以当时,有两个零点.
②证明:,为函数的两个零点,不妨设.
所以,,
两式相减得,两式相加得.
要证,即证,
即证,即证.
令,即证.
令,则,
所以,即,
所以,所以.
科目:高中数学 来源: 题型:
【题目】【2015高考四川,文21】已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),
(1)求实数的取值范围以及直线的方程;
(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;
(3)已知N(0,﹣3),若圆C上存在两个不同的点P,使,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列
列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
愿意 | 不愿意 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为
,记甲通过的关数为
,求
的分布列和数学期望.
参考公式与数据:
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列5个命题中正确命题的个数是( )
①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;
②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为=1.23x+0.08;
④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为;
⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一医用放射性物质原来质量为a,每年衰减的百分比相同,当衰减一半时,所用时间是10年,根据需要,放射性物质至少要保留原来的,否则需要更换.已知到今年为止,剩余的为原来的,
(1)求每年衰减的百分比;
(2)到今年为止,该放射性物质已衰减了多少年?
(3)今后至多还能用多少年?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com