精英家教网 > 高中数学 > 题目详情
13.已知向量$\vec a,\vec b$满足$|\vec a|=2$,$|\vec b|=\sqrt{3}$,且$\vec a$与$\vec b$夹角为30°,那么$\vec a•\vec b$等于(  )
A.1B.$\sqrt{3}$C.3D.$3\sqrt{3}$

分析 利用已知条件,通过向量的数量积公式求解即可.

解答 解:向量$\vec a,\vec b$满足$|\vec a|=2$,$|\vec b|=\sqrt{3}$,且$\vec a$与$\vec b$夹角为30°,
那么$\vec a•\vec b$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos$<\overrightarrow{a},\overrightarrow{b}>$=2$\sqrt{3}×\frac{\sqrt{3}}{2}$=3.
故选:C.

点评 本题考查平面向量的数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数y=$\frac{{2}^{x+1}}{{2}^{x}+1}$与函数y=$\frac{x+1}{x}$的图象共有k(k∈N*)个公共点,A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),则$\sum_{i=1}^{k}$(xi+yi)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是半圆O的直径,点P为半圆O外一点,PA,PB分别交半圆O于点D,C.若AD=2,PD=4,PC=3,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1+a}{x}(a∈R)$.
(Ⅰ) 当a=0时,求曲线f (x)在x=1处的切线方程;
(Ⅱ) 设函数h(x)=alnx-x-f(x),求函数h (x)的极值;
(Ⅲ) 若g(x)=alnx-x在[1,e](e=2.718 28…)上存在一点x0,使得g(x0)≥f(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\vec a,\vec b$,那么$\frac{1}{2}(2\vec a-4\vec b)+2\vec b$等于(  )
A.$\vec a-2\vec b$B.$\overrightarrow{a}$-4$\vec b$C.$\vec a$D.$\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式组$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果圆C:(x-a)2+(y-3)2=5的一条切线的方程为y=2x,那么a的值为(  )
A.4或1B.-1或4C.1或-4D.-1或-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图水平放置的一个平面图形的直观图是边长为1cm的正方形,则原图形的周长是(  )
A.8cmB.6cmC.$2(1+\sqrt{3})cm$D.$2(1+\sqrt{2})cm$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.60名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩不低于80分的学生人数是24.

查看答案和解析>>

同步练习册答案