精英家教网 > 高中数学 > 题目详情
已知定点,是圆上任意一点,点关于点的对称点为,线段的中垂线与直线相交于点,则点的轨迹是
A.椭圆B.双曲线C.抛物线D.圆
B

试题分析:由N是圆O:x2+y2=1上任意一点,可得ON=1,且N为MF1的中点可求MF2,结合已知由垂直平分线的性质可得PM=PF1,从而可得|PF2-PF1|=|PF2-PM|=MF2=2为定值,由双曲线的定义可得点P得轨迹是以F1,F2为焦点的双曲线解:连接ON,由题意可得ON=1,且N为MF1的中点∴MF2=2,∵点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,由垂直平分线的性质可得PM=PF1,∴|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,由双曲线的定义可得点P得轨迹是以F1,F2为焦点的双曲线,故选:B
点评:本题以圆为载体,考查了利用双曲线的定义判断圆锥曲线的类型的问题,解决本题的关键是由N为圆上一点可得ON=1,结合N为MF1的中点,由三角形中位线的性质可得MF2=2,还要灵活应用垂直平分线的性质得到解决本题的第二个关键点|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,从而根据圆锥曲线的定义可求解,体现了转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,经过点的动直线,与椭圆)相交于两点. 当轴时,,当轴时,
(Ⅰ)求椭圆的方程;
(Ⅱ)若的中点为,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点且倾斜角为的直线与抛物线在第一、四象限分别交于两点,则等于(     )
A.5B.4 C.3D. 2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过直线上一点作圆的切线,若关于直线对称,则点到圆心的距离为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为为参数)。
(1)当时,求曲线Cl与C2公共点的直角坐标; 
(2)若,当变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知,其中.设直线的交点为,求动点的轨迹的参数方程(以为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

动点到两定点,连线的斜率的乘积为),则动点P在以下哪些曲线上(    )(写出所有可能的序号)
① 直线   ② 椭圆   ③ 双曲线  ④ 抛物线      ⑤ 圆
A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左焦点为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线是曲线的一条切线,
(Ⅰ)求切点坐标及的值;
(Ⅱ)当时,存在,求实数的取值范围.

查看答案和解析>>

同步练习册答案