精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论函数的单调性

(2)函数,且.若在区间(0,2)内有零点,求实数m的取值范围

【答案】(1)见解析;

(2).

【解析】

(1)f′(xex﹣m,对m分类讨论,利用导数的正负研究函数的单调性即可得出.

(2)设在区间内的一个零点,由g0)=g)=g2)=0,转化为:在区间内至少有两个不同零点,通过研究的单调性、极值最值,进而得出m的取值范围.

(1)f′(xex﹣m,

①当时,成立,上单调递增;

②当时,令,得,则在区间单调递减,在单调递增.

(2)

在区间内的一个零点,因为,可知在区间上不单调,故在区间存在零点;同理:由,可知在区间上存在零点,即在区间内至少有两个不同零点.

由(1)知,得,此时在区间单调递减,在单调递增.

,知

所以,则

故只需:,解得:.

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆经过点,且点为其一个焦点.

(1)求椭圆的方程;

(2)设椭圆轴的两个交点为,不在轴上的动点在直线上运动,直线分别与椭圆交于点,证明:直线通过一个定点,且的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;

②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;

③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;

④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.

其中正确的结论是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了解数学题获取软件激活码的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22依此类推.求满足如下条件的最小整数NN>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是( )

A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,且存在不相等的实数,使得,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,点在椭圆上,且的周长为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十三届全国人大二次会议于201935日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:

收看

没收看

合计

男生

40

女生

30

60

合计

1)请完成列联表;

2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

同步练习册答案