【题目】已知函数
(1)讨论函数的单调性
(2)函数,且.若在区间(0,2)内有零点,求实数m的取值范围
【答案】(1)见解析;
(2).
【解析】
(1)f′(x)ex﹣m,对m分类讨论,利用导数的正负研究函数的单调性即可得出.
(2)设是在区间内的一个零点,由g(0)=g()=g(2)=0,转化为:在区间内至少有两个不同零点及,通过研究的单调性、极值最值,进而得出m的取值范围.
(1)f′(x)ex﹣m,
①当时,成立,在上单调递增;
②当时,令,得,则在区间单调递减,在单调递增.
(2),
设是在区间内的一个零点,因为,,可知在区间上不单调,故在区间存在零点;同理:由,可知在区间上存在零点,即在区间内至少有两个不同零点及.
由(1)知,,得,此时在区间单调递减,在单调递增.
由,知,
所以,则;
故只需:,解得:.
所以实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:经过点,且点为其一个焦点.
(1)求椭圆的方程;
(2)设椭圆与轴的两个交点为,,不在轴上的动点在直线上运动,直线,分别与椭圆交于点,,证明:直线通过一个定点,且的周长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;
②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;
③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;
④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.
其中正确的结论是( )
A. ①②B. ①④
C. ②③D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是
A. 440B. 330
C. 220D. 110
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是( )
A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为、,,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于,两点,设线段的中点为,点到直线的距离为,且,,三点共线,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十三届全国人大二次会议于2019年3月5日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:
收看 | 没收看 | 合计 | |
男生 | 40 | ||
女生 | 30 | 60 | |
合计 |
(1)请完成列联表;
(2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001)
附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com