精英家教网 > 高中数学 > 题目详情
是椭圆上两点,点关于轴的对称点为(异于点),若直线分别交轴于点,则(     )
A.0B.1C.D.2
D

试题分析:(特例法)不妨设,则.选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆.
(1)我们知道圆具有性质:若为圆O:的弦AB的中点,则直线AB的斜率与直线OE的斜率的乘积为定值。类比圆的这个性质,写出椭圆的类似性质,并加以证明;
(2)如图(1),点B为在第一象限中的任意一点,过B作的切线分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(3)如图(2),过椭圆上任意一点的两条切线PM和PN,切点分别为M,N.当点P在椭圆上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
    
图(1)                                    图(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.

(1)求椭圆的方程;
(2)过点任作一动直线交椭圆两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
 
(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)(2011•福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于(        )
A.B.或2C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1,当k变化时,此直线被椭圆截得的最大弦长等于(  )
A.4B.C.D.

查看答案和解析>>

同步练习册答案