精英家教网 > 高中数学 > 题目详情

求函数y=-cos2x-4sinx+6的值域.

解:y=-cos2x-4sinx+6=-(1-sin2x)-4sinx+6=sin2x-4sinx+5=(sinx-2)2+1,
∵sinx∈[-1,1],且函数在[-1,1]上为减函数,
∴x=-1时,y取得最大值,ymax=10;x=1时,y取得最小值,ymin=2,
则函数的值域为y∈[2,10].
分析:先利用同角三角函数间的基本关系把函数关系式化为关于sinx的式子,配方后根据正弦函数的值域得出sinx的范围,从而得出在自变量sinx范围中函数y为减函数,从而求出y的最大值及最小值,进而得出函数的值域.
点评:此题考查了三角函数的恒等变形及化简求值,同角三角函数间的基本关系,二次函数的图象与性质以及正弦函数的值域,利用三角函数的恒等变形把函数解析式化为自变量为sinx的二次函数顶点形式,进而判断出函数为减函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的
1
2
,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,
π
16
]
上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广西一模)已知函数f(x)=
1-sin2x
1-cos2(
π
2
-x)

(1)若tanx=-2,求f(x)的值
(2)求函数y=cotx[f(x)]的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:044

求函数y=cos2(ax+b)的导数

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

求函数y=cos2(ax+b)的导数

查看答案和解析>>

同步练习册答案