ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1 (a£¾b£¾0)
µÄÀëÐÄÂÊΪe=
3
3
£¬ÒÔÔ­µãΪԲÐÄ£¬ÍÖÔ²¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+2=0ÏàÇУ¬A£¬B·Ö±ðÊÇÍÖÔ²µÄ×óÓÒÁ½¸ö¶¥µã£¬PΪÍÖÔ²CÉϵĶ¯µã£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôPÓëA£¬B¾ù²»Öغϣ¬ÉèÖ±ÏßPAÓëPBµÄбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷£ºk1•k2Ϊ¶¨Öµ£»
£¨¢ó£©MΪ¹ýPÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÉϵĵ㣬Èô
|OP|
|OM|
=¦Ë
£¬ÇóµãMµÄ¹ì¼£·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊÇʲôÇúÏߣ®
·ÖÎö£º£¨I£©Ð´³öÔ²µÄ·½³Ì£¬ÀûÓÃÖ±ÏßÓëÔ²ÏàÇеijäÒªÌõ¼þÁгö·½³ÌÇó³öbµÄÖµ£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½µÃµ½a£¬cµÄ¹Øϵ£¬ÔÙÀûÓÃÍÖÔ²±¾ÉíÈý¸ö²ÎÊýµÄ¹ØϵÇó³öa£¬cµÄÖµ£¬½«a£¬bµÄÖµ´úÈëÍÖÔ²µÄ·½³Ì¼´¿É£®
£¨II£©Éè³öPµÄ×ø±ê£¬½«Æä´úÈëÍÖÔ²µÄ·½³ÌµÃµ½PµÄ×ø±êµÄ¹Øϵ£¬Ð´³öA£¬BµÄ×ø±ê£¬ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ö
k1£¬k2£¬½«PµÄ×ø±êµÄ¹Øϵ´úÈëk1k2»¯¼òÇó³öÆäÖµ£®
£¨III£©Éè³öMµÄ×ø±ê£¬Çó³öPµÄ×ø±ê£¬ÀûÓÃÁ½µãµÄ¾àÀ빫ʽ½«ÒÑÖªµÄ¼¸ºÎÌõ¼þÓÃ×ø±ê±íʾ£¬Í¨¹ý¶Ô²ÎÊý¦ËµÄÌÖÂÛ£¬ÅжϳöMµÄ¹ì¼££®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃÔ²µÄ·½³ÌΪx2+y2=b2£¬
¡ßÖ±Ïßx-y+2=0ÓëÔ²ÏàÇУ¬
¡àd=
2
2
=b
£¬
¼´b=
2
£¬
ÓÖe=
c
a
=
3
3
£¬
¼´a=
3
c
£¬
a2=b2+c2£¬
½âµÃa=
3
£¬c=1£¬
ËùÒÔÍÖÔ²·½³ÌΪ
x2
3
+
y2
2
=1
£®
£¨¢ò£©ÉèP£¨x0£¬y0£©£¨y0¡Ù0£©£¬
A(-
3
£¬0)
£¬B(
3
£¬0)
£¬
Ôò
x
2
0
3
+
y
2
0
2
=1
£¬¼´
y
2
0
=2-
2
3
x
2
0
£¬
Ôòk1=
y0
x0+
3
£¬k2=
y0
x0-
3
£¬
¼´k1k2=
y
2
0
x
2
0
-3
=
2-
2
3
x
2
0
x
2
0
-3
=
2
3
(3-
x
2
0
)
x
2
0
-3
=-
2
3
£¬
¡àk1•k2Ϊ¶¨Öµ-
2
3
£®
£¨¢ó£©ÉèM£¨x£¬y£©£¬ÆäÖÐx¡Ê[-
3
£¬
3
]
£®
ÓÉÒÑÖª
|OP|2
|OM|2
=¦Ë2
¼°µãPÔÚÍÖÔ²CÉϿɵÃ
x2+2-
2
3
x2
x2+y2
=
x2+6
3(x2+y2)
=¦Ë2
£¬
ÕûÀíµÃ£¨3¦Ë2-1£©x2+3¦Ë2y2=6£¬ÆäÖÐx¡Ê[-
3
£¬
3
]
£®
¢Ùµ±¦Ë=
3
3
ʱ£¬»¯¼òµÃy2=6£¬
ËùÒÔµãMµÄ¹ì¼£·½³ÌΪy=¡À
6
(-
3
¡Üx¡Ü
3
)
£¬¹ì¼£ÊÇÁ½ÌõƽÐÐÓÚxÖáµÄÏ߶Σ»
¢Úµ±¦Ë¡Ù
3
3
ʱ£¬·½³Ì±äÐÎΪ
x2
6
3¦Ë2-1
+
y2
6
3¦Ë2
=1
£¬ÆäÖÐx¡Ê[-
3
£¬
3
]
£¬
µ±0£¼¦Ë£¼
3
3
ʱ£¬µãMµÄ¹ì¼£ÎªÖÐÐÄÔÚÔ­µã¡¢ÊµÖáÔÚyÖáÉϵÄË«ÇúÏßÂú×ã-
3
¡Üx¡Ü
3
µÄ²¿·Ö£»
µ±
3
3
£¼¦Ë£¼1
ʱ£¬µãMµÄ¹ì¼£ÎªÖÐÐÄÔÚÔ­µã¡¢³¤ÖáÔÚxÖáÉϵÄÍÖÔ²Âú×ã-
3
¡Üx¡Ü
3
µÄ²¿·Ö£»
µ±¦Ë¡Ý1ʱ£¬µãMµÄ¹ì¼£ÎªÖÐÐÄÔÚÔ­µã¡¢³¤ÖáÔÚxÖáÉϵÄÍÖÔ²
µãÆÀ£ºÇóԲ׶ÇúÏߵķ½³Ì£¬Ò»°ãÀûÓôý¶¨ÏµÊý·¨£»½â¾öÖ±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵÎÊÌ⣬һ°ãÉè³öÖ±Ïß·½³Ì£¬½«Ö±Ïß·½³ÌÓëԲ׶ÇúÏß·½³ÌÁªÁ¢£¬ÏûÈ¥Ò»¸öδ֪Êý£¬µÃµ½¹ØÓÚÒ»¸öδ֪ÊýµÄ¶þ´Î·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬ÕÒÍ»ÆÆ¿Ú£®×¢ÒâÉèÖ±Ïß·½³Ìʱ£¬Ò»¶¨ÒªÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèFÊÇÍÖÔ²CµÄ×ó½¹£¬ÅжÏÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2
3
£¬ÓÒ½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖغϣ¬OΪ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬µãD£¨-4£¬0£©£¬ÇÒÂú×ã
DA
=¦Ë
DB
£¬Èô¦Ë¡Ê[
3
8
£¬
1
2
]£¬ÇóÖ±ÏßABµÄбÂʵÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
3
2
£©£¬ÇÒÀëÐÄÂÊe=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãB£¨-1£¬0£©ÄÜ·ñ×÷³öÖ±Ïßl£¬Ê¹lÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çø¶þÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊÇ4£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©Éè¹ýµãP£¨0£¬-2£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÇÒM£¬N²»ÓëÍÖÔ²µÄ¶¥µãÖغϣ¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ
2
2
£¬Éè¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýA£¬B×÷Ö±Ïßx=2µÄ´¹ÏßAP£¬BQ£¬´¹×ã·Ö±ðΪP£¬Q£®¼Ç¦Ë=
AP+BQ
PQ
£¬ÈôÖ±ÏßlµÄбÂÊk¡Ý
3
£¬Ôò¦ËµÄÈ¡Öµ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸