精英家教网 > 高中数学 > 题目详情

【题目】,函数.

(1)若极大值;

(2)若无零点,求实数的取值范围;

(3)若有两个相异零点,求证:.

【答案】(1);(2)(3)证明见解析.

【解析】分析:(1),根据导数的符号可知的极大值为

(2) ,就分类讨论即可;

(3)根据可以得到,因此原不等式的证明可化为,可用导数证明该不等式.

详解:(1)当时,

时,,当时,

的极大值为.

(2)

①若时,则是区间上的增函数,

,函数在区间有唯一零点;

②若有唯一零点

③若,令,得

在区间上,,函数是增函数;

在区间上,,函数是减函数;

故在区间上,的极大值为

由于无零点,须使,解得

故所求实数的取值范围是

(3)由已知得

所以

等价于

不妨设,令

上为单调增函数,

所以,也就是,故原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察下列三角形数表:
假设第n行的第二个数为
(1)归纳出an+1与an的关系式,并求出an的通项公式;
(2)设anbn=1(n≥2),求证:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数
回归直线方程是: ,其中
参考数据:
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:

学生编号

1

2

3

4

5

6

7

8

数学分数x

60

65

70

75

80

85

90

95

物理分数y

72

77

80

84

88

90

93

95

化学分数z

67

72

76

80

84

87

90

92

①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的有________(只填序号)

①若直线与平面有无数个公共点,则直线在平面内;

②若直线l上有无数个点不在平面α,lα;

③若两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;

④若直线l与平面α平行,l与平面α内的直线平行或异面;

⑤若平面α∥平面β,直线aα,直线bβ,则直线ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若D′是平面α外一点,则下列命题正确的是(
A.过D′只能作一条直线与平面α相交
B.过D′可作无数条直线与平面α垂直
C.过D′只能作一条直线与平面α平行
D.过D′可作无数条直线与平面α平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式。对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(1)根据所给数据,求关于的回归方程;

(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的数列{bn}的前n项和为Sn , 且对任意正整数n,都有2Sn=bn(bn+1).
(1)求数列{bn}的通项公式;
(2)如果等比数列{an}共有2015项,其首项与公比均为2,在数列{an}的每相邻两项ak与ak+1之间插入k个(﹣1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}中所有项的和;
(3)如果存在n∈N* , 使不等式 成立,求实数λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足 =0, =2
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)若斜率为k的直线 l与圆x2+y2=1相切,直线 l与(1)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且 时,求k的取值范围.

查看答案和解析>>

同步练习册答案