精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距与短轴长相等,椭圆上一点到两焦点距离之差的最大值为4.

(1)求椭圆的标准方程;

(2)若点为椭圆上异于左右顶点的任意一点,过原点的垂线交的延长线于点,求的轨迹方程.

【答案】(1);(2).

【解析】

1)由题得b=c,到两焦点距离之差,利用焦半径的范围得最大值,确定c值,即可得到椭圆方程;(2)设的斜率分别为,由已知得,设直线BM的方程,整理可得点M的轨迹方程.

(1)由椭圆的焦距与短轴长相等得

为椭圆上任一点,左右焦点分别为

,∵.

最大值为,即,椭圆方程为

(2)设的斜率分别为,设点坐标为

,直线的方程为

直线的方程为

①②两式相除可得

观察可知,点不可能与点重合,则的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占,他们在本学期期末考试中的物理成绩(满分100分)如下面的频率分布直方图:

(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).

(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,

①补充下面的列联表:

物理成绩优秀

物理成绩不优秀

合计

对此事关注

对此事不关注

合计

②是否有以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,平面分别为线段上的点,且

I)证明:平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,试讨论方程的解的个数;

2)若曲线上分别存在点,使得是以原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l11kg)频数分布表如下(单位: kg):

分组

频数

10

15

45

20

10

以各组数据的中间值代表这组数据的平均值,将频率视为概率.

1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数近似为样本方差.请估算该种植园内水果质量在内的百分比;

2)现在从质量为 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为元,求的分布列及数学期望.

附: ,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱柱中,侧棱底面为棱的中点.

1)证明:

2)求二面角的正弦值;

3)设点在线段上,且直线与平面所成角的正弦值是,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

讨论函数的图象的交点个数;

若函数的图象无交点,设直线与的数的图象分别交于点P证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,点为左支上任意一点,直线是双曲线的一条渐近线,点在直线上的射影为,且当取最小值5时,的最大值为( )

A. B. C. D. 10

查看答案和解析>>

同步练习册答案