精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列{an}前n项和为Sn , 且满足S3= ,a6 , 3a5 , a7成等差数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn= ,且数列bn的前n项的和Tn , 试比较Tn 的大小.

【答案】解:(Ⅰ)设等比数列的公比为q, 因为a6 , 3a5 , a7成等差数列,
所以6a5=a6+a7
所以6a5=qa5+q2a5
因为a5≠0,
所以q2+q﹣6=0,
又an>0,
所以q=2.
由S3=
解得a1=
所以通项公式为an= 2n1=2n2
(Ⅱ)bn=
=
=
=
=
所以Tn=b1+b2+b3+…+bn
= (1﹣ + + +…+
= (1﹣ )<
【解析】(Ⅰ)根据等差数列和等比数列的性质即可求出公比,问题得以解决;(Ⅱ)根据对数的运算性质和裂项求和以及放缩法即可求出答案.
【考点精析】掌握等比数列的通项公式(及其变式)和数列的前n项和是解答本题的根本,需要知道通项公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知).

(1)当时,求关于的不等式的解集;

(2)若fx)是偶函数,求k的值;

(3)在(2)条件下,设,若函数的图象有公共点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两个不同的平面,为两条不同的直线,下列命题中正确的是( )

①若,则 ②若,则

③若,则 ④若,则.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在圆x2+y2﹣4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(
A.
B.6
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

(Ⅰ)当时,解关于x的不等式

(Ⅱ)若不等式的解集为D,且,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且过定点M(1, ).
(1)求椭圆C的方程;
(2)已知直线l:y=kx﹣ (k∈R)与椭圆C交于A、B两点,试问在y轴上是否存在定点P,使得以弦AB为直径的圆恒过P点?若存在,求出P点的坐标和△PAB的面积的最大值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线l的参数方程 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为p2cos2θ+p2sinθ﹣2psinθ﹣3=0
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).

(1)将V表示成r的函数V(r),并求该函数的定义域;

(2)讨论函数V(r)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一圆与直线相切于点,且经过点,求此圆的方程.

查看答案和解析>>

同步练习册答案