精英家教网 > 高中数学 > 题目详情

【题目】设椭圆 + =1(a>b>0)的左、右焦点分别为F1、F2 , P是椭圆上一点,|PF1|=λ|PF2|( ≤λ≤2),∠F1PF2= ,则椭圆离心率的取值范围为(
A.(0, ]
B.[ ]
C.[ ]
D.[ ,1)

【答案】B
【解析】解:设F1(﹣c,0),F2(c,0),由椭圆的定义可得,|PF1|+|PF2|=2a,
可设|PF2|=t,可得|PF1|=λt,
即有(λ+1)t=2a①
由∠F1PF2= ,可得|PF1|2+|PF2|2=4c2
即为(λ2+1)t2=4c2 , ②
由②÷①2 , 可得e2=
令m=λ+1,可得λ=m﹣1,
即有 = =2( 2+
≤λ≤2,可得 ≤m≤3,即
则m=2时,取得最小值 ;m= 或3时,取得最大值
即有 ≤e2 ,解得 ≤e≤
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)对任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+m,(m∈R). ①若存在实数a,b(a<b),使得g(x)在区间[a,b]上为单调函数,且g(x)取值范围也为[a,b],求m的取值范围;
②若函数g(x)的零点都是函数h(x)=f(f(x))+m的零点,求h(x)的所有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x﹣2x
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0, ]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机械厂今年进行了五次技能考核,其中甲、乙两名技术骨干得分的平均分相等,成绩统计情况如茎叶图所示(其中a是0﹣9的某个整数

(1)若该厂决定从甲乙两人中选派一人去参加技能培训,从成绩稳定性角度考虑,你认为谁去比较合适?
(2)若从甲的成绩中任取两次成绩作进一步分析,在抽取的两次成绩中,求至少有一次成绩在(90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是圆F1:(x+1)2+y2=16上任意一点(F1是圆心),点F2与点F1关于原点对称.线段PF2的中垂线m分别与PF1、PF2交于M、N两点.
(1)求点M的轨迹C的方程;
(2)直线l经过F2 , 与抛物线y2=4x交于A1 , A2两点,与C交于B1 , B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A、B、C的对边分别为a、b、c.已知(a+c)2﹣b2=3ac
(1)求角B;
(2)当b=6,sinC=2sinA时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C上的动点M到定点F(1,0)的距离和它到定直线x=3的距离之比是1:
(1)求曲线C的方程;
(2)过点F(1,0)的直线l与C交于A,B两点,当△ABO面积为 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2x﹣3sin( x)零点的个数是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差d不为0的等差数列,a1=2,Sn为其前n项和.
(1)当a3=6时,若a1 , a3 …, 成等比数列(其中3<n1<n2<…<nk),求nk的表达式;
(2)是否存在合适的公差d,使得{an}的任意前3n项中,前n项的和与后n项的和的比值等于定常数?求出d,若不存在,说明理由.

查看答案和解析>>

同步练习册答案