精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的短轴长为,离心率为

(1)求椭圆的标准方程;

(2)设椭圆的左,右焦点分别为左,右顶点分别为,点,为椭圆上位于轴上方的两点,且,记直线的斜率分别为,若,求直线的方程.

【答案】(1)(2)

【解析】

1)由题意可得:2b4a2b2+c2.联立解出即可得出椭圆C的标准方程.(2A(﹣30),B30),F1(﹣10),F210),设F1M的方程为:xmy1M),(0),直线F1M与椭圆的另一个交点为M′().由根据对称性可得:.直线方程与椭圆方程联立化为:(8m2+9y216my640,根据根与系数的关系及其,得0,联立解得m

(1)由题意,得.

,∴.

∴椭圆C的标准方程为

(2)由(1),可知.

据题意,直线的方程为

记直线与椭圆的另一交点为,设.

,根据对称性,得.

联立

消去,得,其判别式

.①

,得,即.②

由①②,解得

,∴.

.∴.

∴直线的方程为,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数上单调递减,且,则的值(  )

A. 恒为正B. 恒为负C. 恒为0D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若),,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy22pxp0)与圆无公共点,过抛物线C上一点M作圆D的两条切线,切点分别为EF,当点M在抛物线C上运动时,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:

40岁及以下

40岁以上

合计

基本满意

15

30

45

很满意

25

10

35

合计

40

40

80

(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?

(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):

男:164 178 174 185 170 158 163 165 161 170

女:165 168 156 170 163 162 158 153 169 172

(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.

(2)请根据测量结果得到20名学生身高的中位数(单位:厘米),将男、女生身高不低于和低于的人数填入下表中,并判断是否有的把握认为男、女生身高有差异?

人数

男生

女生

身高

身高

参照公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)若点在椭圆上,且四边形是矩形,求矩形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ABAD1AA12,点PDD1的中点,点MBB1的中点.

1)求证:PB1⊥平面PAC

2)求直线CM与平面PAC所成角的正弦值.

查看答案和解析>>

同步练习册答案