【题目】已知椭圆的短轴长为,离心率为。
(1)求椭圆的标准方程;
(2)设椭圆的左,右焦点分别为,左,右顶点分别为,,点,,为椭圆上位于轴上方的两点,且,记直线,的斜率分别为,,若,求直线的方程.
【答案】(1)(2)
【解析】
(1)由题意可得:2b=4,,a2=b2+c2.联立解出即可得出椭圆C的标准方程.(2)A(﹣3,0),B(3,0),F1(﹣1,0),F2(1,0),设F1M的方程为:x=my﹣1,M(),(>0),直线F1M与椭圆的另一个交点为M′().由根据对称性可得:.直线方程与椭圆方程联立化为:(8m2+9)y2﹣16my﹣64=0,根据根与系数的关系及其,得0,联立解得m.
(1)由题意,得,.
又,∴,,.
∴椭圆C的标准方程为
(2)由(1),可知,,.
据题意,直线的方程为
记直线与椭圆的另一交点为,设,.
∵,根据对称性,得.
联立,
消去,得,其判别式,
∴,.①
由,得,即.②
由①②,解得,
∵,∴.
∴.∴.
∴直线的方程为,即.
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)与圆无公共点,过抛物线C上一点M作圆D的两条切线,切点分别为E,F,当点M在抛物线C上运动时,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:
40岁及以下 | 40岁以上 | 合计 | |
基本满意 | 15 | 30 | 45 |
很满意 | 25 | 10 | 35 |
合计 | 40 | 40 | 80 |
(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?
(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.
(2)请根据测量结果得到20名学生身高的中位数(单位:厘米),将男、女生身高不低于和低于的人数填入下表中,并判断是否有的把握认为男、女生身高有差异?
人数 | 男生 | 女生 |
身高 | ||
身高 |
参照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点,点M为BB1的中点.
(1)求证:PB1⊥平面PAC;
(2)求直线CM与平面PAC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com