精英家教网 > 高中数学 > 题目详情

【题目】一位老人把他积蓄的枚金币分给个儿女(为大于 1 的正整数).首先, 给老大 1 枚金币和余下的;然后,从余下的金币中给老二 2 枚金币和余下的;依此类推 ,第几个孩子就分几枚金币和余下的,直到最小的孩子分到最后剩下的枚金币.问老人分给每个孩子的金币是否一样多?

【答案】一样多

【解析】

设分给第个儿女后还剩枚金币,

.

.

这表明数列是等比数列,公比,其中首项、末项分别为

.

代入通项公式

.

为正整数知,.

互质,故.

故有.

解得.从而,.

由此可知,

老大分得枚,

老二分得枚,

老三分得枚,

老四分得枚,

老五分得枚,

最小的孩子分得剩下的6.

所以, 老人分给每个孩子的金币是一样多的.

说明:本题给出了第 9 IMO 6题的一个原型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,a1=3,且Sn=nan1-n2-n.

(1){an}的通项公式;

(2)若数列{bn}满足,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电影公司随机收集了电影的有关数据,经分类整理得到下表:

电影类型

第一类

第二类

第三类

第四类

第五类

第六类

电影部数

140

50

300

200

800

510

好评率

0.4

0.2

0.15

0.25

0.2

0.1

好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.

(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;

(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;

(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一小袋中有3个红色、3个白色的乒乓球(其体积、质地完全相同),从袋中随机摸出3个球.

1)求摸出的3个球都为白球的概率是多少?

2)求摸出的3个球为2个红球、1个白球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.

(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高学生学习的数学的兴趣,南京港师范大学附属中学拟开设《数学史》、《微积分先修课程》、《数学探究》、《数学建模》四门校本选修课程,甲、乙、丙三位同学打算在上述四门课程中随机选择一门进行学习,已知三人选择课程时互不影响,且每人选择每一门课程都是等可能的.

1)求三位同学选择的课程互不相同的概率:

2)求甲、乙两位同学不能选择同一门课程,求三人共有多少种不同的选课种数;

3)若至少有两位同学选择《数学史》,求三人共有多少种不同的选课种数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将要举行校园歌手大赛,现有43女参加,需要安排他们的出场顺序.结果用数字作答

1)如果3个女生都不相邻,那么有多少种不同的出场顺序?

2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序?

3)如果3位女生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若存在区间,使上的值域为,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)若两条互相垂直的直线都经过原点(两条直线与坐标轴都不重合)且与曲线分别交于点(异于原点),且,求这两条直线的直角坐标方程.

查看答案和解析>>

同步练习册答案