【题目】已知函数.
(1)若,求函数的所有零点;
(2)若,证明函数不存在极值.
【答案】(1) (2)见证明
【解析】
(1)首先将代入函数解析式,求出函数的定义域,之后对函数求导,再对导函数求导,得到(当且仅当时取等号),从而得到函数在单调递增,至多有一个零点,因为,是函数唯一的零点,从而求得结果;
(2)根据函数不存在极值的条件为函数在定义域上是单调函数,结合题中所给的参数的取值范围,得到在上单调递增,从而证得结果.
(1)解:当 时,,
函数的定义域为,
且.
设,
则 .
当时,;当时,,
即函数在上单调递减,在上单调递增,
所以当时,(当且仅当时取等号).
即当时,(当且仅当时取等号).
所以函数在单调递增,至多有一个零点.
因为,是函数唯一的零点.
所以若,则函数的所有零点只有.
(2)证法1:因为,
函数的定义域为,且.
当时,,
由(1)知.
即当时,
所以在上单调递增.
所以不存在极值.
证法2:因为,
函数的定义域为 ,且.
设,
则 .
设 ,则与同号.
当 时,由,
解得,.
可知当时,,即,当时,,即,
所以在上单调递减,在上单调递增.
由(1)知.
则.
所以,即在定义域上单调递增.
所以不存在极值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCD,E为棱AA1的中点,AB=2,AA1=3.
(Ⅰ)求证:A1C∥平面BDE;
(Ⅱ)求证:BD⊥A1C;
(Ⅲ)求三棱锥A-BDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=4y的焦点为F,直线:y=kx+b(k≠0)交抛物线C于A、B两点,|AF|+|BF|=4,M(0,3).
(1)若AB的中点为T,直线MT的斜率为,证明:k· 为定值;
(2)求△ABM面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 离心率等于,、是椭圆上的两点.
(1)求椭圆的方程;
(2)是椭圆上位于直线两侧的动点.当运动时,满足,试问直线的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,倾斜角为的直线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于,两点,且,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+mx+n(m,n∈R)满足f(0)=f(1),且方程x=f(x)有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)当x∈[0,3]时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:①设,则是的充要条件;②已知命题、、满足“或”真,“或”也真,则“或”假;③若,则使得恒成立的的取值范围为{或};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com