精英家教网 > 高中数学 > 题目详情

【题目】调查在3级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船

(1)作出性别与晕船关系的列联表;

(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为3级风的海上航行中晕船与性别有关?

晕船

不晕船

总计

男人

女人

总计

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

【答案】(1)见解析; (2)没有理由认为级风的海上航行中晕船与性别有关.

【解析】

(1)根据题意,填写列联表即可;(2)由观测值公式计算k,对照临界值得出结论

(1)

晕船

不晕船

总计

男人

12

25

37

女人

10

24

34

总计

22

49

71

(2)由公式得

,∴我们没有理由认为级风的海上航行中晕船与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正四棱台ABCDA1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1B1C所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(2)证明:存在a(0,1),使得f(x)≥0,在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序(  )

A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(2x+1)定义域是[﹣1,0],则y=f(x+1)的定义域是(  )
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为 ”的(
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn ,若 ,且S11=143,数列{bn}的前n项和为Tn , 且满足
(1)求数列{an}的通项公式及数列 的前n项和Mn
(2)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

查看答案和解析>>

同步练习册答案