精英家教网 > 高中数学 > 题目详情
20.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1,E为线段B1C的中点.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)若OC=OA,求二面角C-AB-A1的余弦值.

分析 (Ⅰ)取BC的中点F,连接AF,EF,则EF平行且等于AD,证明:ADEF是平行四边形,可得AF∥DE,即可证明DE∥平面ABC;
(Ⅱ)作OM⊥AB,连接CM,则CM⊥AB,∠CMO为二面角C-AB-A1的平面角,即可求二面角C-AB-A1的余弦值.

解答 (Ⅰ)证明:取BC的中点F,连接AF,EF,则EF平行且等于AD,
∴ADEF是平行四边形,
∴AF∥DE,
∵DE?平面ABC,AF?平面ABC,
∴DE∥平面ABC;
(Ⅱ)解:作OM⊥AB,连接CM,则CM⊥AB,∠CMO为二面角C-AB-A1的平面角,
侧面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,∴AO=$\frac{\sqrt{3}}{3}$=CO,OM=$\frac{\sqrt{2}}{3}$
∴CM=$\frac{\sqrt{5}}{3}$,
∴二面角C-AB-A1的余弦值=$\frac{\sqrt{10}}{5}$.

点评 本题考查线面平行的判定,考查二面角的余弦值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江西省南昌市高二理下学期期末考试数学试卷(解析版) 题型:选择题

如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么小明在这一周中每天所吃水果个数的不同选择方案共有( )种

A.50 B.51 C.140 D.141

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}-sin\frac{π}{2}x+1,0≤x≤2\\ f(x-1),x>2\end{array}$,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是[-$\frac{1}{3}$,-$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知动点(x,y)符合条件$\left\{\begin{array}{l}y≥2x-1\\ y≥-2x+3\end{array}\right.$,则$\frac{y}{x}$范围为(-∞,-2)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点(-1,3)到直线y=-1的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用坐标法证明:平行四边形对角线的平方和等于四条边的平方和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C:xy=1,先将曲线C作关于x轴的反射变换,再将所得图形绕原点顺时针旋转90°.
(1)求连续两次变换所对应的变换矩阵M;
(2)求曲线C在TM作用下得到的曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知数列{an}中,${a_1}=\frac{1}{2}$,${a_{n+1}}=sin({\frac{π}{2}{a_n}})({n∈{{N}^*}})$,Sn为数列{an}的前n项和,求证:${S_n}>n-\frac{5}{2}$.
(2)在数列{an}中,a1=1,${a}_{n+1}=c{a}_{n}{+c}^{n+1}(2n+1)$,n∈N*,其中实数c≠0.
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 若对一切k∈N*有a2k>a2k-1,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tan(α+β)=2,tan(α-β)=3,则$\frac{sin2α}{cos2β}$的值为$\frac{5}{7}$.

查看答案和解析>>

同步练习册答案