精英家教网 > 高中数学 > 题目详情

【题目】如图,在五面体ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求证:PN∥AB;

(2)求NC与平面BDN所成角的正弦值.

【答案】(1)见解析; (2).

【解析】

(1)菱形得线线平行,进而得线面平行,再得线线平行;

(2)需建立空间坐标系,找出相关点的坐标,利用公式计算得解.

(1)证明:

在菱形ABCD中,ABCD

CDCDPN,ABCDPN

AB∥面CDPN

又面ABNP∩CDPN=PN

ABPN

(2)取CD中点M,

在菱形ABCD中,∠BAD=可知AMAB

PA⊥面ABCD

∴以A为原点建立空间坐标系如图

AB=2,则B(2,0,0)

N(1,0,2),D(﹣1,,0),C(1,,0)

=(0,,﹣2)

=(1,0,﹣2)

=(﹣3,,0)

设面BDN的法向量为=(m,n,p)

,得

m=2,则n=2,p=1

=(2,2,1)

NC与平面BDN所成的角为θ,

sinθ=|cos

NC与平面BDN所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是双曲线C1 =1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|= |F1F2|,其中O为坐标原点,则双曲线C1的离心率是(
A.2+
B.1+
C.2+
D.1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=9x+m﹣1,若函数y=f(x)﹣g(x)在区间[﹣2,1]上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某零售店近5个月的销售额和利润额资料如下表:

商店名称

销售额/千万元

3

5

6

7

9

利润额/百万元

2

3

3

4

5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;

(2)用最小二乘法计算利润额关于销售额的回归直线方程;

(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).

[参考公式:]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 的充分条件,求实数 的取值范围;

(2)若 ”为真命题,“”为假命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:

网购金额(单位:千元)

频数

频率

网购金额(单位:千元)

频数

频率

[0,0.5)

3

0.05

[1.5,2)

15

0.25

[0.5,1)

[2,2.5)

18

0.30

[1,1.5)

9

0.15

[2.5,3]

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.

(1)确定的值,并补全频率分布直方图;

(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;

②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标中,圆,圆

()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示)

()求圆的公共弦的参数方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)的离心率为 ,直线x+y+ =0与椭圆E仅有一个公共点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3所截得的弦长为3,且与椭圆E交于A、B两点,求△ABO面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点分别为,左焦点为,已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)若过点的直线与该椭圆交于两点,且线段的中点恰为点,且直线的方程;

(3)若经过点的直线与椭圆交于两点,记的面积分别为,求的取值范围.

查看答案和解析>>

同步练习册答案