【题目】我们把定义域为且同时满足以下两个条件的函数称为“函数”:(1)对任意的,总有;(2)若,,则有成立,下列判断正确的是( )
A.若为“函数”,则
B.若为“函数”,则在上为增函数
C.函数在上是“函数”
D.函数在上是“函数”
科目:高中数学 来源: 题型:
【题目】以下判断正确的是 ( )
A. 函数为上的可导函数,则是为函数极值点的充要条件
B. 若命题为假命题,则命题与命题均为假命题
C. 若,则的逆命题为真命题
D. 在中,“”是“”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.
(1)若a=-2,求函数f(x)的解析式;
(2)若函数f(x)为R上的单调减函数,
①求a的取值范围;
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值(值越大产品的性能越好)与这种新合金材料的含量(单位:克)的关系为:当时,是的二次函数;当时,.测得部分数据如下表:
(单位:克) | 0 | 2 | 6 | 10 | … |
8 | 8 | … |
(Ⅰ)求关于的函数关系式;
(Ⅱ)求该新合金材料的含量为何值时产品的性能达到最佳.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com