精英家教网 > 高中数学 > 题目详情
18.已知在数列{an}中,an=$\frac{1}{n(n+1)}$,其前n项和为$\frac{9}{10}$,则在平面直角坐标系中直线nx+y+(n+1)=0在y轴上的截距是(  )
A.-10B.-9C.10D.9

分析 由an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,运用裂项相消求和,可得前n项和为Sn=1-$\frac{1}{n+1}$,由题意解方程可得n=9,再令直线方程中x=0,解得y,即为所求.

解答 解:an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
前n项和为Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$,
由题意可得1-$\frac{1}{n+1}$=$\frac{9}{10}$,
解得n=9,
直线nx+y+(n+1)=0,即为9x+y+10=0,
令x=0,可得y=-10.
故选:A.

点评 本题考查数列的求和方法:裂项相消求和,考查直线的截距的求法,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图所示,在透明塑料制成的长方体容器ABCD-A1B1C1D1灌进一些水,将容器底面的一边BC固定于地面上,再将容器倾斜,随着倾斜程度的不同,有以下命题:
①水的形状成棱柱形;
②水面EFGH的面积不变;
③A1D1始终与水面EFGH平行.
其中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an},{bn}中,a1=3,b1=5,an+1=$\frac{{b}_{n}+4}{2}$,bn+1=$\frac{{a}_{n}+4}{2}$(n∈N*).
(1)求数列{bn-an}的通项公式;
(2)设数列{an+bn}的前n项和为Tn,试求数列{2n-3Tn}的前n项和An
(3)设Sn为数列{bn}的前n项和,若对任意n∈N*,都有p(Sn-4n)∈[1,3],求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在三棱锥P-ABC中,D,E分别是PA,PB上的点,DE∥平面ABC,求证:$\frac{PD}{PA}=\frac{PE}{PB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某蔬菜基底种植西红柿,由历年市场行情得知,从二月一日起的200天内,西红柿的种植成本与上市时间的关系用图1的抛物线弧表示,西红柿市场售价与上市时间的关系用图2的一条线段表示(注:市场售价和种植成本的单位:元/100kg,时间单位:天)
(1)写出图1表示的种植成本与时间的函数关系式Q=g(t),写出图2表示的市场售价与时间的函数关系式P=f(t)
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在数列{an}中,若a1=3,an+1=an+2(n≥1且n∈N*),则数列{an}的前n项和S12=168.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若光线沿直线l1:x-y+1=0射入,遇到直线l2:2x+y-4=0立即反射,则反射光线所在的直线l的方程是x-7y+13=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.作出正弦型函数y=2sin(3x-$\frac{π}{3}$)在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log2(1-$\frac{2x-1}{x+1}$)的定义域为A,复数z=$\frac{3-i}{1-2i}$-ai,若a∈A,则|z|的取值范围是[1,$\sqrt{5}$).

查看答案和解析>>

同步练习册答案