精英家教网 > 高中数学 > 题目详情
10.△ABC中,角A,B,C所对的边长分别为a,b,c,$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,则△ABC的面积为(  )
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$2\sqrt{3}$

分析 由$\overrightarrow{m}$⊥$\overrightarrow{n}$,得sinB=-$\frac{2\sqrt{3}cosA}{\sqrt{7}}$,由正弦定理得得sinA=-$\sqrt{3}cosA$,再由同角三角函数关系式得到cosA=-$\frac{1}{2}$,sinA=$\frac{\sqrt{3}}{2}$,从而sinB=$\frac{\sqrt{3}}{\sqrt{7}}$,cosB=$\frac{2}{\sqrt{7}}$,从而求出sinC,由此利用△ABC的面积S=$\frac{1}{2}absinC$,能求出结果.

解答 解:∵△ABC中,角A,B,C所对的边长分别为a,b,c,
$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,
∴$\overrightarrow{m}•\overrightarrow{n}$=$asinB+\sqrt{3}bcosA$=$\sqrt{7}sinB+2\sqrt{3}cosA$=0,
∴sinB=-$\frac{2\sqrt{3}cosA}{\sqrt{7}}$,
由正弦定理得$\frac{\sqrt{7}}{sinA}=\frac{2}{-\frac{2\sqrt{3}cosA}{\sqrt{7}}}$,整理,得sinA=-$\sqrt{3}cosA$,
∴sin2A+cos2A=4cos2A=1,
∵0<A<π,∴cosA=-$\frac{1}{2}$,sinA=$\frac{\sqrt{3}}{2}$,A=$\frac{2π}{3}$,
∴sinB=$\frac{\sqrt{3}}{\sqrt{7}}$,cosB=$\sqrt{1-(\frac{\sqrt{3}}{\sqrt{7}})^{2}}$=$\frac{2}{\sqrt{7}}$,
∴sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{3}}{2}×\frac{2}{\sqrt{7}}-\frac{1}{2}×\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{3}}{2\sqrt{7}}$,
∴△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{7}×2×\frac{\sqrt{3}}{2\sqrt{7}}$=$\frac{\sqrt{3}}{2}$.
故选:C.

点评 本题考查三角形面积的求法,是中档题,解题时要认真审题,注意向量垂直、正弦定理、同角三角函数关系式等知识点的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.化简:$\frac{1+cosα+cos2α+cos3α}{2co{s}^{2}α+cosα-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=|\overrightarrow b|=\overrightarrow a•\overrightarrow b=2$,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)≤0$,则|$\overrightarrow c$|的最小值为$\sqrt{3}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线y2=4x的焦点为F,准线与x轴的交点为P,过P任作一条直线与抛物线交于A、B两点,O为坐标原点.
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值
(2)设C为抛物线上位于第一象限的任意一点,过C作直线l与抛物线相切,求证:F关于直线l的对称点在抛物线的准线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2|x-3|+|x-4|,x∈[2,6].若不等式|f(x)|<2a的解集不是空集,则a的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知多项式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,则a2=(  )
A.32B.42C.46D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l经过点$A(1,\sqrt{3})$和B(1,0),则直线l的倾斜角为(  )
A.B.60°C.90°D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的方程ex=ax+b(a>0,b∈R)有相等根,则a+b的最大值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={1,3,5,7,9},N={x|2x<9},则M∩N=(  )
A.{1,3,5}B.{1,3}C.{1}D.{3}

查看答案和解析>>

同步练习册答案