精英家教网 > 高中数学 > 题目详情
7.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成角的余弦值是$\frac{\sqrt{10}}{5}$.

分析 以D为原点,建立空间直角坐标系,利用向量法能求出异面直线D1E与AC所成角的余弦值.

解答 解:如图,建立空间直角坐标系,
则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),
$\overrightarrow{AC}$=(-4,4,0),$\overrightarrow{{D}_{1}E}$=(0,4,-2).

cos<$\overrightarrow{AC}$,$\overrightarrow{{D}_{1}E}$>=$\frac{\overrightarrow{AC}•\overrightarrow{{D}_{1}E}}{|\overrightarrow{AC}|•|\overrightarrow{{D}_{1}E}|}$=$\frac{16}{\sqrt{32}×\sqrt{20}}$=$\frac{\sqrt{10}}{5}$.
∴异面直线D1E与AC所成角的余弦值为$\frac{\sqrt{10}}{5}$.
故答案为:$\frac{\sqrt{10}}{5}$.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.不等式|x-1|≥5的解集是{x|x≥6或x≤-4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,如表为抽样试验结果:
转速x(转/秒)1614128
每小时生产有
缺点的零件数y(件)
11985
(1)用相关系数r对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,求线性回归方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?(结果保留整数)
参考数据:$\sum_{i=1}^{4}$xiyi=438,t=m2-1,$\sum_{i=1}^{4}$yi2=291,$\sqrt{656.25}$≈25.62.
参考公式:相关系数计算公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数 f(x)=cos$\frac{π}{3}x$,则 f(1)+f(2)+f(3)+…+f(2016)+f(2017)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在四面体ABCD中,AB=CD=2,AB与CD所成的角为45°,点E,F,G,H分别在棱EC,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若实数x,y满足约束条件$\left\{\begin{array}{l}5x+3y≤15\\ y≤x+1\\ x-5y≤3.\end{array}$
(1)求目标函数z=x+y的最大值;
(2)求目标函数z=$\sqrt{{x^2}+{y^2}+6x-6y+18}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],且a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定义证明函数f(x)在[-1,1]上是增函数;
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1对所有x∈[-1,1]恒成立,求:实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式:
(1)$\frac{x+3}{1-2x}$≥0
(2)$\frac{5}{{x_{\;}^2-10x+21}}$>1.

查看答案和解析>>

同步练习册答案