精英家教网 > 高中数学 > 题目详情
16.已知:函数$f(x)=2\sqrt{3}sin(π-x)sin(\frac{π}{2}-x)+2cos(π+x)sin(\frac{3π}{2}+x)+2$
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是A、B、C的对边,若f(A)=4,b=1,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求a的值.

分析 (1)利用三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x+$\frac{π}{6}$)+3,利用周期公式可求f(x)的最小正周期,由2kπ$+\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{3π}{2}$,k∈Z,解得单调递减区间.
(2)由f(A)=2sin(2A+$\frac{π}{6}$)+3=4,可得sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,结合A的范围,可求A的值,利用三角形面积公式可求c,由余弦定理即可求得a的值.

解答 (本题满分为12分)
解:(1)∵f(x)=2$\sqrt{3}$sinxcosx+2cos2x+2=$\sqrt{3}$sin2x+cos2x+3=2sin(2x+$\frac{π}{6}$)+3,
∴f(x)的最小正周期T=$\frac{2π}{2}=π$,由2kπ$+\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{3π}{2}$,k∈Z,解得单调递减区间为:[k$π+\frac{π}{6}$,k$π+\frac{2π}{3}$],k∈Z…6分
(2)f(A)=2sin(2A+$\frac{π}{6}$)+3=4,∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<π,∴$\frac{π}{6}$<2A+$\frac{π}{6}$<2π+$\frac{π}{6}$,∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,∴A=$\frac{π}{3}$.
∵S△ABC=$\frac{1}{2}bcsinA=\frac{1}{2}csin\frac{π}{3}$=$\frac{\sqrt{3}c}{4}$=$\frac{\sqrt{3}}{2}$,解得c=2.
∴a2=b2+c2-2bccosA=3,解得:a=$\sqrt{3}$…12分

点评 本题主要考查了余弦定理,三角形面积公式,考查了正弦函数的图象和性质,三角函数恒等变换的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知sinα+cosβ=$\frac{1}{3}$,sinβ-cosα=$\frac{1}{2}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.定义在R上的函数f(x)满足f(xy)=xf(y)+yf(x),判断f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a>0,b>0,则以下不等式不恒成立的是(  )
A.(a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4B.|a-b|+$\frac{1}{a-b}$≥2C.$\sqrt{a+3}$-$\sqrt{a+1}$≤$\sqrt{a+2}$-$\sqrt{a}$D.$\sqrt{|a-b|}$≥$\sqrt{a}$-$\sqrt{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三个数x,y,z满足$\frac{xy}{x+y}=-3,\frac{yz}{y+z}=\frac{4}{3},\frac{zx}{z+x}=-\frac{4}{3},\frac{xyz}{xy+yz+zx}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要得到函数y=3sin2x的图象,只需将函数y=3sin(2x-$\frac{π}{3}$)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=f(x),x∈D同时满足下列条件:
(1)在D内为单调函数;
(2)?[m,n],使x∈[m,n]时,f(x)的值域为[m,n],则称此函数为D内的可等射函数.
若f(x)=$\frac{{a}^{x}+a-3}{lna}$(a>1)为可等射函数,则a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求函数y=f(x)的解析式;
(2)求函数g(x)=$\frac{3}{2}{x^2}$-9x+a+2与y=f(x)的图象有三个交点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$tan(2x-\frac{π}{4})$的其中一个对称中心为(  )
A.$(-\frac{π}{8},0)$B.$(\frac{π}{2},0)$C.(0,0)D.$(\frac{π}{4},0)$

查看答案和解析>>

同步练习册答案