精英家教网 > 高中数学 > 题目详情
2.若6个人排成一排合影,则甲站在乙左边的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 只有甲站在乙左边和甲站在乙的右边两种形式,由此求得甲站在乙左边的概率.

解答 解:无论多少人,只有甲站在乙左边和甲站在乙的右边两种形式,
故的6个人排成一排合影,则甲站在乙左边的概率为$\frac{1}{2}$,
故选:C.

点评 本题考查等可能事件的概率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=|x-a|-$\frac{3}{x}$+a,a∈R,若实数a,使得f(x)=2有且仅有3个不同实数根,且它们成等差数列,则所有a的取值构成的集合为{a|a=$\frac{5+3\sqrt{33}}{8}$或-$\frac{9}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y+2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}\right.$,则x2+y2的取值范围是[1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:(3+t)x-(t+1)y-4=0(t为参数)和圆C:x2+y2-6x-8y+16=0:
(1)t∈R时,证明直线l与圆C总相交:
(2)直线l被圆C截得弦长最短,求此弦长并求此时t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sinθ=$\frac{2}{3}$,θ为第二象限角,则$\frac{1{-tan}^{2}\frac{θ}{2}}{1{+tan}^{2}\frac{θ}{2}}$=(  )
A.$\frac{\sqrt{5}}{3}$B.-$\frac{\sqrt{5}}{3}$C.$\sqrt{5}$D.-$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{2}{\sqrt{x}+5}$的定义域是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.($\frac{1}{16}$)-${\;}^{\frac{1}{4}}$+log5$\frac{7}{3}$+log5$\frac{15}{7}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“$\overrightarrow{a}$•$\overrightarrow{b}$<0”是“<$\overrightarrow{a}$,$\overrightarrow{b}$>为钝角”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设1ogca、1ogcb是方程x2-3x+1=0的两根,求logc$\frac{b}{a}$的值.

查看答案和解析>>

同步练习册答案