精英家教网 > 高中数学 > 题目详情

如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.

(1)求A,ω的值和M,P两点间的距离;

(2)应如何设计,才能使折线段线段MNP最长?

答案:
解析:

  (Ⅰ)依题意,有(1分),又.(2分)

  ,当时,(4分)

  又(5分)

  (Ⅱ)解法一在△MNP中∠MNP=120°,MP=5,设∠PMN=,则0°<<60°

  由正弦定理得

  (7分)

  故(10分)

  0°<<60°(11分)

  =30°时,折线段赛道MNP最长,亦即,将∠PMN设计为30°时,折线段道MNP最长(12分)

  解法二:在△MNP中,∠MNP=120°,MP=5,

  由余弦定理得∠MNP=(7分)

  故,从而,即(10分)

  当且仅当时,折线段道MNP最长(12分)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4
3
).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.
(1)求实数A和ω的值以及M、P两点之间的距离;
(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;
(3)(理科)应如何设计,才能使折线段MNP最长?
(文科)求函数y的最大值.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学理科(福建卷) 题型:044

如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段位函数yAsinωx(0,ω>0)x[04]的图像,且图像的最高点位S(32);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP120°

()A,ω的值和MP两点间的距离;

()应如何设计,才能使折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源:黑龙江哈九中2012届高三第四次模拟数学文科试题 题型:044

如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.

(1)求A,ω的值和M,P两点间的距离;

(2)应如何设计,才能使折线段线段MNP最长?

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.
(1)求实数A和ω的值以及M、P两点之间的距离;
(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;
(3)(理科)应如何设计,才能使折线段MNP最长?
(文科)求函数y的最大值.

查看答案和解析>>

同步练习册答案