【题目】如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.
(1)证明:平面;
(2)若,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)连结BM,推导出BC⊥BB1,AA1⊥BC,从而AA1⊥MC,进而AA1⊥平面BCM,AA1⊥MB,推导出四边形AMNP是平行四边形,从而MN∥AP,由此能证明MN∥平面ABC.
(2)推导出△ABA1是等腰直角三角形,设AB,则AA1=2a,BM=AM=a,推导出MC⊥BM,MC⊥AA1,BM⊥AA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣CM﹣N的余弦值.
(1)如图1,在三棱柱中,连结,因为是矩形,
所以,因为,所以,
又因为,,所以平面,
所以,又因为,所以是中点,
取中点,连结,,因为是的中点,则且,
所以且,所以四边形是平行四边形,所以,
又因为平面,平面,所以平面.
(图1) (图2)
(2)因为,所以是等腰直角三角形,设,
则,.在中,,所以.
在中,,所以,
由(1)知,则,,如图2,以为坐标原点,,,的方向分别为轴,轴,轴的正方向建立空间直角坐标系,
则,,.
所以,则,,
设平面的法向量为,
则即
取得.故平面的一个法向量为,
因为平面的一个法向量为,
则.
因为二面角为钝角,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.
指数 | 级别 | 类别 | 户外活动建议 |
Ⅰ | 优 | 可正常活动 | |
Ⅱ | 良 | ||
Ⅲ | 轻微污染 | 易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动. | |
轻度污染 | |||
Ⅳ | 中度污染 | 心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动. | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动. |
现统计邵阳市市区2016年1月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.
(1)求这60天中属轻度污染的天数;
(2)求这60天空气质量指数的平均值;
(3)一般地,当空气质量为轻度污染或轻度污染以上时才会出现雾霾天气,且此时出现雾霾天气的概率为,请根据统计数据,求在未来2天里,邵阳市恰有1天出现雾霾天气的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知在矩形中,,,平面,且.
(1)问当实数在什么范围时,边上能存在点,使得?
(2)当边上有且仅有一个点使得时,求二面角的余弦值大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
①“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
②若事件A与事件B互斥,则P(A∪B)=P(A)+P(B);
③在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;
④若α、β是两个相交平面,直线mα,则在平面β内,一定存在与直线m平行的直线.
上述命题中,其中真命题的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形为菱形, , , , ,平面平面, , 为的中点, 为平面内任一点.
(1)在平面内,过点是否存在直线使?如果不存在,请说明理由,如果存在,请说明作法;
(2)过, , 三点的平面将几何体截去三棱锥,求剩余几何体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com