【题目】已知圆.
(Ⅰ)若圆的切线在轴和轴上的截距相等,求此切线的方程;
(Ⅱ)从圆外一点向该圆引一条切线,切点为,为坐标原点,且有,求使得
取得最小值时点的坐标.
【答案】(I),或,或,或;(II).
【解析】
试题分析:(I)当直线的截距为零时,设切线方程为,当直线的截距不为零时,设切线方程为,分别根据圆心到直线的距离等于圆的半径,求解的值,即可求解切线的方程;(II)由,得,当取最小值时,即取得最小值,直线,得出直线的方程为,联立方程组,即可求解的坐标.
试题解析:(I)将圆配方得,
①当直线在两坐标轴上的截距为零时,设直线方程为,
由,解得,得,
②当直线在两坐标轴上的截距不为零时,设直线方程为,
由,得,即,或,
∴直线方程为,或,
综上,圆的切线方程为,或,或,或.
(II)由,得,整理得,
即点在直线上,
当取最小值时,即取得最小值,直线,∴直线的方程为,
解方程组,得点的坐标为.
科目:高中数学 来源: 题型:
【题目】已知点,,圆是以的中点为圆心,为半径的圆.
(1)若圆的切线在轴和轴上截距相等,求切线方程;
(2)若是圆外一点,从向圆引切线,为切点,为坐标原点,,求使最小的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在定义域内存在实数,使得成立,则称为函数的“可增点”.
(1)判断函数是否存在“可增点”?若存在,求出的取值范围;若不存在,说明理由;
(2)若函数在上存在“可增点”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间将10名技工平均分为甲,乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号 | 2号 | 3号 | 4号 | 5号 | |
甲组 | 4 | 5 | 7 | 9 | 10 |
乙组 | 5 | 6 | 7 | 8 | 9 |
(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此判断哪组工人的技术水平更好;
(2)质监部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,否则“不合格”.求该车间“质量不合格”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是正方形,平面,分别为的中点.
(1)求证:平面;
(2)求平面与平面所成锐二面角的大小;
(3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于棱柱的说法中,错误的是( )
A. 三棱柱的底面为三角形
B. 一个棱柱至少有五个面
C. 若棱柱的底面边长相等,则它的各个侧面全等
D. 五棱柱有5条侧棱、5个侧面,侧面为平行四边形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com