精英家教网 > 高中数学 > 题目详情
12.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,满足PQ∥平面AC1D1,则PQ与平面BDD1B1所成角的范围是($\frac{π}{6}$,$\frac{π}{3}$].

分析 :以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出PQ与平面BDD1B1所成角的范围.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系
则A(1,0,0),C1(0,1,1),D1(0,0,1),
$\overrightarrow{A{D}_{1}}$=(-1,0,1),$\overrightarrow{A{C}_{1}}$=(-1,1,1),
设平面AC1D1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{D}_{1}}=-x+z=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=-x+y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
设P(0,1,t),Q(a,b,0),a,b,t∈[0,1),$\overrightarrow{DQ}=λ\overrightarrow{DB}$,0≤λ<1,
∴(a,b,0)=(λ,λ,0),∴Q(λ,λ,0),$\overrightarrow{PQ}=(λ,λ-1,-t)$,
∵PQ∥平面AC1D1,∴$\overrightarrow{PQ}•\overrightarrow{n}=λ-t=0$,t=λ,∴$\overrightarrow{PQ}=(λ,λ,-λ)$,
∵AC⊥平面BDD1B1,∴平面BDD1B1的一个法向量$\overrightarrow{AC}$=(-1,1,0),
设PQ与平面BDD1B1所成角为θ,
则sinθ=|cos<$\overrightarrow{PQ},\overrightarrow{AC}$>|=|$\frac{\overrightarrow{PQ}•\overrightarrow{AC}}{|\overrightarrow{PQ}|•|\overrightarrow{AC}|}$|
=$\frac{1}{\sqrt{2}•\sqrt{3{λ}^{2}-2λ+1}}$=$\frac{1}{\sqrt{2}•\sqrt{3(λ-\frac{1}{3})^{2}+\frac{2}{3}}}$,0≤λ<1,
∴λ=$\frac{1}{3}$时,(sinθ)max=$\frac{1}{\sqrt{2}•\sqrt{\frac{2}{3}}}$=$\frac{\sqrt{3}}{2}$,此时$θ=\frac{π}{3}$,
λ=1时,(sinθ)min=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$,此时$θ=\frac{π}{6}$,
∴PQ与平面BDD1B1所成角的范围是($\frac{π}{6}$,$\frac{π}{3}$].
故答案为:$(\frac{π}{6},\frac{π}{3}]$.

点评 本题考查直线与平面所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=x({\frac{2}{{{2^x}-1}}+k})$为偶函数.
(1)求k的值;
(2)若$g(x)=\frac{f(x)}{x}$,当x∈(0,1]时,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,3x>2x;命题q:?x∈R,tanx=2,则下列命题为真命题的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2-x+2a-1(a>0).
(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数$h(x)={(\frac{1}{2})^x}+{log_2}\frac{1}{x+1}$,若对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“世界睡眠日”定在每年的3月21日.2015年的世界睡眠日主题是“科学管理睡眠”,以提高公众对健康睡眠的自我管理能力和科学认识.为此某网站2015年3月13日到3月20日持续一周的在线调查,共有200人参加调查,现将数据整理分组如题中表格所示.为了对数据进行分析,采用了计算机辅助计算.分析中一部分计算见算法流程图.
序号
(i)
分组
睡眠时间
组中值
(mi
频数
(人数)
频率
(fi
1[4,5)4.580.04
2[5,6)5.5520.26
3[6,7)6.5m0.30
4[7,8)7.5560.28
5[8,9)8.520n
6[9,10]9.540.02
(1)求表格中m与n的值
(2)求输出S的值
(3)S的统计意义是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法中,正确的是(  )
A.数据5,4,4,3,5,2的众数是4
B.根据样本估计总体,其误差与所选择的样本容量无关
C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x)是偶函数,对x∈R,都有f(2+x)=f(2-x),当f(-3)=-2时,f(2015)的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一家饭店有客房150间,每间每天住宿费100元时,客房全满,饭店要提高客房档次,提高住宿费增加收人,如果住宿费每间每天每增加20元,客房出租数就会减少10间,不考虑其他因素,饭店客房每间每天住宿费为多少元时,饭店的每天收入最高?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}中,a1=-24,d=2.求
(1)求数列的通项公式an
(2)数列的前n项和Sn
(3)当n为何值时,Sn有最小值,且最小值是多少?

查看答案和解析>>

同步练习册答案