分析 设直线OA的方程为y=kx,则直线OB的方程为y=-$\frac{1}{k}$x,设点A(x1,y1),y=kx与双曲线方程联立,可得x12=$\frac{3}{3-{k}^{2}}$,y12=$\frac{3{k}^{2}}{3-{k}^{2}}$,可求得|OA|2,|OB|2,|OA|2•|OB|2,利用基本不等式即可求得答案.
解答 解:设直线OA的方程为y=kx,则直线OB的方程为y=-$\frac{1}{k}$x,
设点A(x1,y1),y=kx与双曲线方程联立,可得x12=$\frac{3}{3-{k}^{2}}$,y12=$\frac{3{k}^{2}}{3-{k}^{2}}$,
∴|OA|2=x12+y12=$\frac{3+3{k}^{2}}{3-{k}^{2}}$,
同理|OB|2=$\frac{3+3{k}^{2}}{3{k}^{2}-1}$,
故|OA|2•|OB|2=$\frac{(3+3{k}^{2})^{2}}{-3+10{k}^{2}-3{k}^{4}}$
∵$\frac{{k}^{2}}{(1+{k}^{2})^{2}}$=$\frac{1}{{k}^{2}+\frac{1}{{k}^{2}}+2}$≤$\frac{1}{4}$(当且仅当k=±1时,取等号)
∴|OA|2•|OB|2≥9,又b>a>0,
故S△AOB=$\frac{1}{2}$|OA||OB|的最小值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查双曲线的简单性质与三角形的面积,考查基本不等式,考查转化与综合运算及抽象思维能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 35 | B. | 70 | C. | 80 | D. | 140 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com