精英家教网 > 高中数学 > 题目详情

【题目】为了了解某高校学生喜欢使用手机支付是否与性别有关,抽取了部分学生作为样本,统计后作出如图所示的等高条形图,则下列说法正确的是(

A.喜欢使用手机支付与性别无关

B.样本中男生喜欢使用手机支付的约

C.样本中女生喜欢使用手机支付的人数比男生多

D.女生比男生喜欢使用手机支付的可能性大些

【答案】D

【解析】

根据等高条形图可得喜欢使用手机支付与性别有关,样本中男生喜欢使用手机支付的约为40%,女生比男生喜欢使用手机支付的可能性大些,由于不知道男女生人数,所以不能认定女生喜欢使用手机支付的人数是否比男生多.

A错误,根据等高条形图,喜欢和不喜欢使用手机支付的比例因性别差距很明显,所以喜欢使用手机支付与性别有关;

B错误,样本中男生喜欢使用手机支付的约为40%

女生比男生喜欢使用手机支付的可能性大些,由于不知道男女生人数,所以不能认定女生喜欢使用手机支付的人数是否比男生多.所以C错误,D正确.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的方格表中的某些小方格染黑,使得不存在由三个黑色小方格构成的共四种情形.求最多有多少个小方格被染色

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若上存在极大值点,求实数的取值范围;

(Ⅱ)求证:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点构成一个等边三角形,且直线与圆相切.

1)求椭圆的方程;

2)已知过椭圆的左顶点的两条直线分别交椭圆两点,且,求证:直线过定点,并求出定点坐标;

3)在(2)的条件下求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)已知分别是椭圆的左、右顶点,过的直线交椭圆两点,记直线的交点为,是否存在一条定直线,使点恒在直线上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:

(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;

(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

①先从收入在的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,随机变量,求的分布列与数学期望;

②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

管理时间(单位:月)

并调查了某村名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

女性村民

求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.

参考公式:,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C以点为圆心,且被直线截得的弦长为.

1)求圆C的标准方程;

2)若直线l经过点,且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知100条线段的长度集合,试求从这些线段中任取三条线段能够构成三角形的概率

查看答案和解析>>

同步练习册答案