精英家教网 > 高中数学 > 题目详情
若函数f(x),g(x)满足g(x-y)=g(x)g(y)+f(x)f(y),并且f(0)=0,f(-1)=-1,f(1)=1.
(1)证明:f2(x)+g2(x)=g(0).
(2)求g(0),g(1),g(-1),g(2)的值.
(3)判断f(x),g(x)的奇偶性.
(1)证明:令y=x,g(0)=f2(x)+g2(x);
(2)∵g(0)=g2(0)+f2(0),
∴g(0)=0或1;
若g(0)=0,则由(1)可知f(x)=g(x)=0,与题设矛盾,
故g(0)=1.
又g(0)=g(1)g(1)+f(1)f(1),
g(0)=g(-1)g(-1)+f(-1)f(-1),
故g(1)=0,g(-1)=0,令x=1,y=-1,
g(2)=g(1)g(-1)+f(1)f(-1),g(2)=-1.
(3)g(y-x)=g(y)g(x)+f(y)f(x)=g(x-y),
故g(x)是偶函数;
用-x,-y 替换x,y,g(y-x)=g(-x)g(-y)+f(-x)f(-y),g(x)是偶函数,
与原式联立可得f(-x)f(-y)=f(x)f(y),令y=1,可得f(x)=-f(-x).
∴f(x)是奇函数.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足,则的值为
(   )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

当x在实数集R上任取值时,函数f(x)相应的值等于2x、2、-2x三个之中最大的那个值.
(1)求f(0)与f(3);
(2)画出f(x)的图象,写出f(x)的解析式;
(3)证明f(x)是偶函数;
(4)写出f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)满足:f(p+q)=f(p)•f(q),f(1)=2,则:
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+…+
f(2014)
f(2013)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0,且f(1)=2
(1)求f(0),f(-1)的值
(2)求证:f(x)是奇函数
(3)试问在-2≤x≤4时,f(x)是否有最值;如果没有,说出理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,如果两点A(a,b),B(-a,-b)函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=
cos
π
2
x,x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第x天(1≤x≤20,x∈N)的销售价格(单位:元)为p=
44+x,1≤x≤6
56-x,6<x≤20
,第x天的销售量为q=
48-x,1≤x≤8
32+x,8<x≤20
,已知该商品成本为每件25元.
(Ⅰ)写出销售额t关于第x天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=10x,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集为(-1,3).
(1)求a,b的值;
(2)若函数f(x)在x∈[m,1]上的最小值为1,求实数m的值.

查看答案和解析>>

同步练习册答案