精英家教网 > 高中数学 > 题目详情

【题目】抛掷两颗骰子,求:

(1)向上点数之和是的倍数的概率;

(2)向上点数之和大于小于的概率.

【答案】(1).

(2).

【解析】分析:(1)记“点数之和是4的倍数”为事件A,事件A包含的基本事件共有9个,由此能求出点数之和是4的倍数的概率.

(2)设“点数之和大于5小于10”为事件B,事件B包含的基本事件共有20个,由此能求出点数之和大于5小于10的概率.

详解:从图中容易看出基本事件与所描点一一对应,共种.

(1)记“点数之和是的倍数”为事件,从图中可以看出,事件包含的基本事件共有个:.

所以.

(2)记“点数之和大于小于”为事件,从图中可以看出,事件包含的基本事件共有个,即.所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为 ,上顶点为 周长为 ,离心率为 .
(1)求椭圆 的方程;
(2)若点 是椭圆 上第一象限内的一个点,直线 过点 且与直线 平行,直线 与椭圆 交于 两点,与 交于点 ,是否存在常数 ,使 .若存在,求出 的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且,其前n项之和为Sn,则满足不等式的最小自然数n___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从装有 2个红球和 2个白球的口袋中任取 2个球,则下列每对事件中,互斥事件的对数是( )对

(1)“至少有 1个白球”与“都是白球” (2)“至少有 1个白球”与“至少有 1个红球”

(3)“至少有 1个白球”与“恰有 2个白球” (4)“至少有 1个白球”与“都是红球”

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )
A. ,y R,若x+y 0,则x 且y
B.a R,“ ”是“a>1”的必要不充分条件
C.命题“ x R,使得 ”的否定是“ R,都有
D.“若 ,则a<b”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,中点.

(1)证明:平面

(2)若平面是边长为的正三角形,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建一仓库,并在公路同侧建造一个正方形无顶中转站(其中边上),现从仓库和中转站分别修两条道路,已知,且,设

(1)求关于的函数解析式

(2)如果中转站四周围墙(即正方形周长)造价为万元,两条道路造价为万元,问:取何值时,该公司建中转围墙和两条道路总造价最低?

查看答案和解析>>

同步练习册答案