精英家教网 > 高中数学 > 题目详情
10.某工厂生产甲、乙两种产品.已知生产甲种产品1t需耗A种矿石10t,B种矿石5t,煤4t;生产乙种产品1t需耗A种矿石4t,B种矿石4t,煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t,B种矿石不超过200t,煤不超过360t.甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?

分析 设分别生产甲乙两种产品x吨,y吨,利润总额为z=600x+1000y元,即y=-$\frac{3}{5}$x$+\frac{z}{1000}$,列出不等式组,作出平面区域,找到目标函数截距取最大值时对应的点,求出点的坐标代入利润公式即可.

解答 解:设分别生产甲乙两种产品x吨,y吨,利润总额为z元,则z=600x+1000y,
其中,$\left\{\begin{array}{l}{10x+4y≤300}\\{5x+4y≤200}\\{4x+9y≤360}\\{x≥0}\\{y≥0}\end{array}\right.$,作出平面区域如图,


∵z=600x+1000y,
∴y=-$\frac{3}{5}$x$+\frac{z}{1000}$,
故当直线y=-$\frac{3}{5}$x$+\frac{z}{1000}$经过点P时,截距最大,即z最大.
解方程组$\left\{\begin{array}{l}{4x+9y=360}\\{5x+4y=200}\end{array}\right.$得x≈12.4,y≈34.5.
将x=12.4,y=34.5代入z=600x+1000y得z=41940.
∴生产甲种产品12.4t,乙种产品34.5t时所获利润最大,最大利润为41940元.

点评 本题考查了线性规划在生活中的应用,寻求题目中的不等关系是解决本题的关键,计算量较大,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数$y={(2+x)^0}-\sqrt{2+x}$的定义域为(  )
A.[-2,+∞)B.[-2,0)∪(0,+∞)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{2}^{x}}{a}$+$\frac{a}{{2}^{x}}$(a>0)是偶函数.
(1)求实数a的值;
(2)判断f(x)在(0,+∞)上的单调性,并用定义证明;
(3)若不等式f(x)>b-log2|x|在[-2,-1]上恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知a=2,b=5,c=4,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一个长方体的长、宽、高之和为12,对角线长为8,那么它的表面积为80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.点A(1,-2)、B(2,1)所对应的复数分别是z1、z2,O是坐标原点.
(1)求复数z=2z1+z2及模|z|;
(2)判断复数1+z1•$\overline{{z}_{2}}$所对应的点所在的象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A,B,C是圆O:x2+y2=1上不同的三个点,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,存在实数λ,μ满足$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则点(λ,μ)与圆O的位置关系是(  )
A.在圆O外B.在圆O上C.在圆O内D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设直线l:y=kx+1与曲线f(x)=ax2+2x+b+ln(x+1)(a>0)相切于点P(0,f(0)).
(1)求b,k的值;
(2)若直线l与曲线y=f(x)有且只有一个公共点,求a的值.

查看答案和解析>>

同步练习册答案