精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,平面的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求异面直线所成角的余弦值;

(Ⅲ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)证明见解析;(Ⅱ)() .

【解析】

(Ⅰ)由线面平行的性质可得,由勾股定理可得,从而可得平面,进而可得结果;(Ⅱ)取的中点为,连接,可证明为平行四边形,所成的角,利用余弦定理可得结果;() ,由面面垂直的性质可得平面,连接,则就是直线与平面所成角,求出的值,进而可得结果.

(Ⅰ)平面平面



平面

平面

平面平面

(Ⅱ)

的中点为,连接

为平行四边形,

所成的角,

又直角三角形中,

所以

即异面直线所成角的余弦值为

()

为垂足.
()知平面平面
平面平面
平面,连接,则
就是直线与平面所成角,

,

即直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为奇函数 为偶函数

(1)求的解析式及定义域

(2)若关于的不等式恒成立求实数的取值范围

(3)如果函数若函数有两个零点求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为

1)求椭圆的方程;

2)若直线与椭圆分别交于两点,且,试问点到直线的距离是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用五种不同颜色给三棱台的六个顶点染色,要求每个点染一种颜色,且每条棱的两个端点染不同颜色.则不同的染色方法有___________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题pk2﹣8k﹣20≤0,命题q:方程1表示焦点在x轴上的双曲线.

(1)命题q为真命题,求实数k的取值范围;

(2)若命题“pq”为真,命题“pq”为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1) 如果,求函数的值域;

(2) 求函数的最大值;

(3) 如果对不等式中的任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中常数.

(1)当时,求函数的极值;

(2)若函数有两个零点,求证:

(3)求证: .

选做题:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据

年份编号x

1

2

3

4

5

年份

2014

2015

2016

2017

2018

加装户数y

34

95

124

181

216

)若有意向加装暖气的户数y与年份编号x满足线性相关关系求yx的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;

2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:

1)求所抽取的居民中拟报竞价不低于成本价180元的人数;

2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)

参考公式对于一组数据(x1y1),(x2y2),(x3y3),xnyn),其回归直线的斜率和截距的最小二乘估计分别为,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,以椭圆四个顶点为顶点的四边形的面积为.

1)求椭圆E的方程;

2)过椭圆E的右焦点作直线E交于AB两点,O为坐标原点,求面积的最大值,并求此时直线的方程.

查看答案和解析>>

同步练习册答案