【题目】已知椭圆E: =1(a>b>0)的焦距为2 ,其上下顶点分别为C1 , C2 , 点A(1,0),B(3,2),AC1⊥AC2 .
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.
【答案】
(1)解:∵AC1⊥AC2,C1(0,b),C2(0,﹣b),A(1,0),
∴ =1﹣b2=0,∴b2=1.
∵2c=2 ,解得c= ,∴a2=b2+c2=3.
∴椭圆E的方程为 =1.
离心率e= = =
(2)解:m,n之间满足数量关系m=n+1.下面给出证明:
①当取M ,N 时,kMB= ,kBP= ,kNB= ,
∵直线MB,BP,NB的斜率依次成等差数列,∴2× = + ,化为:m=n+1.
②当直线MN的斜率不为0时,设直线MN的方程为:ty+1=x.M(x1,y1),N(x2,y2).
联立 ,化为:(t2+3)y2+2ty﹣2=0,
∴y1+y2= ,y1y2= .
kMB= ,kBP= ,kNB= ,
∵直线MB,BP,NB的斜率依次成等差数列,
∴2× = + ,
由于 + = = =2,
∴ =1,化为:m=n+1
【解析】(1)由AC1⊥AC2 , 可得 =1﹣b2=0,又2c=2 ,a2=b2+c2 , 即可得出.(2)m,n之间满足数量关系m=n+1.下面给出证明:①当取M ,N 时,根据斜率计算公式、及其直线MB,BP,NB的斜率依次成等差数列即可证明.②当直线MN的斜率不为0时,设直线MN的方程为:ty+1=x.M(x1 , y1),N(x2 , y2).与椭圆方程联立化为:(t2+3)y2+2ty﹣2=0,根据斜率计算公式、及其直线MB,BP,NB的斜率依次成等差数列、根与系数的关系化简即可证明.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,B1C的中点.
(1)求证:MN∥平面AA1C1C;
(2)若∠ABC=90°,AB=BC=2,AA1=3,求点B1到面A1BC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e2x﹣1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,角A,B,C的对边分别为a,b,c,cos A=,sin B=cos C.
(1)求tan C的值;
(2)若a=,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a﹣x2(1≤x≤2)与g(x)=x+2的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[﹣ ,+∞)
B.[﹣ ,0]
C.[﹣2,0]
D.[2,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈[﹣2,0],使得f(x2)≤g(x1)成立,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列三种说法:
①命题p:x0∈R,tan x0=1,命题q:x∈R,x2-x+1>0,则命题“p∧()”是假命题.
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3.
③命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.
其中所有正确说法的序号为________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com