精英家教网 > 高中数学 > 题目详情
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.

 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(1)(2)详见解析

试题分析:(1)本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件数,列举出结果,满足条件的事件也可以列举出结果,得到概率.
(2)根据所给的数据,列出列联表,根据列联表中的数据,做出观测值,把观测值同临界值表进行比较,得到有90%的把握认为成绩优秀与教学方式有关.
试题解析:解析 (1)设“抽出的两个均‘成绩优秀’”为事件A.
从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99),(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个.
而事件A包含基本事件:
(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个.
所以所求概率为P(A)=.
(2)由已知数据得
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
1
5
6
成绩不优秀
19
15
34
总计
20
20
40
 
根据列联表中数据,
K2
由于3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6, 0.5,0.5,0.4,各人是否使用设备相互独立,
(1)求同一工作日至少3人需使用设备的概率;
(2)实验室计划购买k台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如下表:
 
患心肺疾病
不患心肺疾病
合计
大于40岁
16
 
 
小于等于40岁
 
12

合计
 
 
40
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为
(1)请将列联表补充完整;
(2)已知大于40岁患心肺疾病市民中,经检查其中有4名重症患者,专家建议重症患者住院治疗,现从这16名患者中选出两名,记需住院治疗的人数为,求的分布列和数学期望;
(3)能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,用ABC三类不同的元件连接成两个系统N1N2,当元件ABC都正常工作时,系统N1正常工作;当元件A正常工作且元件BC至少有一个正常工作时,系统N2正常工作, 已知元件ABC正常工作的概率依次为0.80,0.90,0.90,分别求系统N1N2正常工作的概率P1P2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)2009年4月22日是第40个“世界地球日” (World Earth Day),在某校举办的《2009“世界地球日”》知识竞赛中,甲、乙、丙三人同时回答一道有关保护地球知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答对的概率是
(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人中恰有两人回答对该题的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校150名教职工中,有老年人20个,中年人50个,青年人80个,从中抽取20个作为样本.
①采用随机抽样法:抽签取出30个样本;
②采用系统抽样法:将教工编号为00,01,…,149,然后平均分组抽取30个样本;
③采用分层抽样法:从老年人,中年人,青年人中抽取30个样本.
下列说法中正确的是(  )
A.无论采用哪种方法,这150个教工中每一个被抽到的概率都相等
B.①②两种抽样方法,这150个教工中每一个被抽到的概率都相等;③并非如此
C.①③两种抽样方法,这150个教工中每一个被抽到的概率都相等;②并非如此
D.采用不同的抽样方法,这150个教工中每一个被抽到的概率是各不相同的

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题分12分)
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量X服从二项分布,X~B,则P(X=1)的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是
则在这段时间内吊灯能照明的概率是_____________________;

查看答案和解析>>

同步练习册答案