精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=
x-1
在点A(2,1)处的切线为直线l
(1)求切线l的方程;
(2)求切线l,x轴及曲线所围成的封闭图形的面积S.
分析:(1)求出函数f(x)的导数f'(x),再求出f'(1)的值得到曲线在点A处的切线斜率,利用直线的点斜式方程列式,化简即得切线l的方程;
(2)算出曲线在x轴上的交点坐标,可得所求面积为函数
1
2
x-
x-1
在[0,2]上的定积分的值,再利用积分计算公式加以计算即可得到答案.
解答:解:(1)∵求导数,得f'(x)=
1
2
x-1

∴曲线f(x)=
x-1
在点A(2,1)处的切线斜率为f'(2)=
1
2
2-1
=
1
2

因此,切线l的方程为y-1=
1
2
(x-2),化简得x-2y=0;
(2)令y=0,得f(1)=0,得曲线f(x)=
x-1
在x轴的交点为(1,0)
∴封闭图形的面积为S=
2
0
(
1
2
x-
x-1
)dx
=[
1
4
x2
-
2
3
(x-1)
3
2
]
|
2
1
=
1
3

即切线l,x轴及曲线所围成的图形面积为
1
3
点评:本题给出曲线f(x)=
x-1
在点A处的切线方程,并依此求封闭图形的面积.着重考查了切线的方程求法、定积分的几何意义和积分计算公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,若曲线f(x)在点(1,f(1))处的切线斜率为3,且当x=
23
时,y=f(x)有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3+bx2+cx在点A(-1,f(-1)),B(3,f(3))处的切线互相平行,且函数f(x)的一个极值点为x=0.
(Ⅰ)求实数b,c的值;
(Ⅱ)若函数y=f(x),x∈[-
12
,3]
的图象与直线y=m恰有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案