精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心点,点在棱上,且的面积为1.

1)若点的中点,求证:平面平面

2)在棱上是否存在一点使得二面角的余弦值为?若存在,求出点的位置;若不存在,说明理由.

【答案】(1)证明见解析;(2)存在点符合题意,点为棱靠近端点的三等分点

【解析】

1)利用等腰三角形“三线合一”证明平面,进而证明平面平面

2)分别以轴,轴,轴建立空间直角坐标系,设,利用平面的法向量求二面角,进而计算得到即可

(1)∵点在底面上的射影为点,∴平面,

∵四边形是边长为的正方形,∴,

三角形的面积为1,∴,,∴,

,的中点,

,同理可得,

又因为,平面,

平面,

平面,

∴平面平面

(2)存在,

如图,连接,易得两两互相垂直,

分别以轴,轴,轴建立空间直角坐标系,

,假设存在点使得二面角的余弦值为,

不妨设,

∵点在棱上,∴,

,

,

,

,,

设平面的法向量为,则,,

,可得,∴平面的一个法向量为,

又平面的一个法向量为,二面角的余弦值为,

,即,

解得(舍)

所以存在点符合题意,点为棱靠近端点的三等分点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】进位制是人们为了计数和运算方便而约定的计数系统,“满几进一”就是几进制,不同进制之间可以相互转化,例如把十进制的89转化为二进制,根据二进制数“满二进一”的原则,可以用2连续去除89得商,然后取余数,具体计算方法如下:

把以上各步所得余数从下到上排列,得到89=1011001(2)这种算法叫做“除二取余法”,上述方法也可以推广为把十进制数化为k进制数的方法,称为“除k取余法”,那么用“除k取余法”把89化为七进制数为_

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品在50个不同地区的零售价格全部介于13元与18元之间,将各地价格按如下方式分成五组:第一组,第二组……,第五组.如图是按上述分组方法得到的频率分布直方图.

1)求价格落在内的地区数;

2)借助频率分布直方图,估计该商品价格的中位数(精确到0.1);

3)现从这两组的全部样本数据中,随机选取两个地区的零售价格,记为,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且满足,当时,.

1)判断上的单调性并加以证明;

2)若方程有实数根,则称为函数的一个不动点,设正数为函数的一个不动点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数处的切线方程;

(2)令,讨论函数的单调性;

(3)当时,,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,长轴在x轴上,长轴长是短轴长的2倍,两焦点分别为,椭圆上一点到的距离之和为12.的圆心为.

1)求的面积;

2)若椭圆上所有点都在一个圆内,则称圆包围这个椭圆.问:是否存在实数k使得圆包围椭圆?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求实数取值的集合;

(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的产品具有60个月的时效性,在时效期内,企业投入50万元经销该产品,为了获得更多的利润,企业将每月获得利润的10%再投入到次月的经营中,市场调研表明,该企业在经销这个产品的第个月的利润是(单位:万元),记第个月的当月利润率为,例.

1)求第个月的当月利润率;

2)求该企业在经销此产品期间,哪一个月的当月利润率最大,并求出该月的当月利润率.

查看答案和解析>>

同步练习册答案