精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),则n-m的取值范围是[3-2ln2,2).

分析 作出函数f(x)的图象如图:利用消元法转化为关于n的函数,构造函数求函数的导数,利用导数研究函数的单调性和最值即可得到结论.

解答 解:作出函数f(x)的图象如图:
若m<n,且f(m)=f(n),
则当ln(x+1)=1时,得x+1=e,即x=e-1,
则满足0<n≤e-1,-2<m≤0,
则ln(n+1)=$\frac{1}{2}$m+1,即m=2ln(n+1)-2,
则n-m=n+2-2ln(n+1),
设h(n)=n+2-2ln(n+1),0<n≤e-1
则h′(n)=1-$\frac{2}{n+1}$=$\frac{n+1-2}{n+1}$=$\frac{n-1}{n+1}$,
当h′(x)>0得1<n≤e-1,
当h′(x)<0得0<n<1,
即当n=1时,函数h(n)取得最小值h(1)=1+2-2ln2=3-2ln2,
当n=0时,h(0)=2-2ln1=2,
当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=1+e-2=e-1<2,
则3-2ln2≤h(n)<2,
即n-m的取值范围是[3-2ln2,2),
故答案为:[3-2ln2,2)

点评 本题主要考考查分段函数的应用,构造函数求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知sinα+cosα=$\frac{1}{5}$   且 0<α<π求:
(1)sinαcosα;
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过原点O的圆x2+y2-2ax=0又过点(4,2),(1)求圆的方程,(2)A为圆上动点,求弦OA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A∈α,P∉α,$\overrightarrow{PA}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,x)其中x>0,且|$\overrightarrow{PA|}$|=$\sqrt{3}$,平面α的一个法向量$\overrightarrow n=(0,-\frac{1}{2},-\sqrt{2})$.
(1)求x的值;
(2)求直线PA与平面α所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,则实数a的取值范围是(  )
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等,现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.3、已知函数$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^2},x>0\end{array}\right.$,则f[f(-1)]=(  )
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(2sinx,cosx),$\overrightarrow{b}$=(cosx,2$\sqrt{3}$cosx),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$
(Ι)求函数f(x)的最小正周期;
(ΙΙ) 当$x∈[0,\frac{π}{2}]$时,求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为治疗某种流行疾病,医生让某患者服用一种抗生素,规定每天早上八时服一片,现知该药片每片含药量为128毫克,他的肾脏每天可从体内滤出这种药的50%,问:
(1)经过多少天,该患者所服的第一片药在他体内残留不超过1毫克?
(2)如果抵抗这种疾病要求体内的药物含量不低于25毫克,该患者自服药起的6天内都能抵抗这种疾病,那么该患者应至少连续服药多少天?

查看答案和解析>>

同步练习册答案