精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,
3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|-|BF2|=
6
2
,求直线AF的斜率.
(1)∵椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),
点(1,e)和(e,
3
2
)都在椭圆上,
1
a2
+
e2
b2
=1
e2
a2
+
3
4b2
=1

e2=
c2
a2
=
a2-b2
a2
=1-
b2
a2

1
a2
+
e2
b2
=
1
a2
+
1-
b2
a2
b2
=
1
a2
+
1
b2
-
1
a2
=1
,解得b2=1,

e2
a2
+
3
4b2
=
a2-b2
a4
+
3
4b2
=1

∴a4-4a2+4=(a2-2)=0,解得a2=2,
∴椭圆方程为
x2
2
+y2=1

(2)∵椭圆方程为
x2
2
+y2=1
,∴F1(-1,0),F2(1,0),
又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x-1=my.
设A(x1,y1),B(x2,y2),y1>0,y2>0,
∴由
x12
2
+y12=1
x1+1=my1
,得(m2+2)y12-2my1-1=0.
y1=
m+
2m2+2
m2+2
,或y1=
m-
2m2+2
m2+2
(舍),
∴|AF1|=
m2+1
×|0-y1|
=
2
(m2+1)+m
m2+1
m2+2
,①
同理|BF2|=
2
(m2+1)-m
m2+1
m2+2
,②
∵|AF1|-|BF2|=
6
2

∴由①②得|AF1|-|BF2|=
2m
m2+1
m2+2
=
6
2
,解得m2=2.
∵注意到m>0,∴m=
2

∴直线AF1的斜率为
1
m
=
2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且
PA
=
AB
,则称点P为“λ点”,那么直线l上有______个“λ点”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若θ是任意实数,则方程x2+4y2sinθ=1所表示的曲线一定不是(  )
A.圆B.双曲线C.直线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线L:y=kx+1与椭圆C:ax2+y2=2(a>1)交于A、B两点,以OA、OB为邻边作平行四边形OAPB(O为坐标原点).
(1)若k=1,且四边形OAPB为矩形,求a的值;
(2)若a=2,当k变化时(k∈R),求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为
1
2
.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1x+
3
y+3=0
相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且
MP
MQ
=-2
,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行.
(1)求双曲线的离心率;
(2)若点M(4,0)到双曲线上的点P的最小距离等于1,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-2,0),B(2,0),M(-1,0),直线PA,PB相交于点P,且它们的斜率之积为-
3
4

(1)求动点P的轨迹方程;
(2)试判断以PB为直径的圆与圆x2+y2=4的位置关系,并说明理由;
(3)直线PM与椭圆的另一个交点为N,求△OPN面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(1)建立适当的平面直角坐标系,求双曲线C的方程;
(2)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2
2
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为
2
5
5

(1)求椭圆C的方程;
(2)过原点且斜率为
1
2
的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

同步练习册答案