精英家教网 > 高中数学 > 题目详情

【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 ,2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):

满意度

老年人

中年人

青年人

乘坐高铁

乘坐飞机

乘坐高铁

乘坐飞机

乘坐高铁

乘坐飞机

10(满意)

12

1

20

2

20

1

5(一般)

2

3

6

2

4

9

0(不满意)

1

0

6

3

4

4

1)在样本中任取,求这个出行人恰好不是青年人的概率;

2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,的分布列和数学期望;

3)如果甲将要从市出发到,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.

【答案】12)分布列见解析,数学期望3)建议甲乘坐高铁从市到.见解析

【解析】

1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,即可按照古典概型的概率计算公式计算得出;

2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;

3)可以计算满意度均值来比较乘坐高铁还是飞机.

(1)设事件:在样本中任取个,这个出行人恰好不是青年人

由表可得:样本中出行的老年人、中年人、青年人人次分别为

所以在样本中任取个,这个出行人恰好不是青年人的概率

(2)由题意,的所有可能取值为:

因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人

为老年人概率是

所以

所以随机变量的分布列为:

(3)答案不唯一,言之有理即可.

如可以从满意度的均值来分析问题,参考答案如下:

由表可知,乘坐高铁的人满意度均值为:

乘坐飞机的人满意度均值为:

因为

所以建议甲乘坐高铁从市到市.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面

(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于渐近线方程为的双曲线有下述四个结论:①实轴长与虚轴长相等,②离心率是③过焦点且与实轴垂直的直线被双曲线截得的线段长与实轴长相等,④顶点到渐近线与焦点到渐近线的距离比值为.其中所有正确结论的编号(

A.①②B.①③C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5;不等式选讲.

已知函数

(1)的解集非空,求实数的取值范围;

(2)若正数满足 为(1)中m可取到的最大值,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接2019年的高考,某学校进行了第一次模拟考试,其中五个班的考试成绩在500分以上的人数如下表,为班级,表示500分以上的人数

1

2

3

4

5

20

25

30

30

25

1)若给出数据,班级与考试成绩500以上的人数,满足回归直线方程,求出该回归直线方程;

2)学校为了更好的提高学生的成绩,了解一模的考试成绩,从考试成绩在500分以上13班学生中,利用分层抽样抽取5人进行调研,再从选中的5人中,再选3名学生写出经验介绍文章,则选的三名学生1班一名,32名的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知侧面.

)求直线与底面所成角正切值;

)在棱(不包含端点)上确定一点E的位置,

使得(要求说明理由);

)在()的条件下,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角ABC所对的边分别为abc,已知asinB=bsin2A.

1)求角A

2)若a=5,△ABC的面积为,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有,则当的面积最大时,AC边上的高为_______________.

查看答案和解析>>

同步练习册答案