精英家教网 > 高中数学 > 题目详情

已知抛物线C的方程为,焦点为F,有一定点,A在抛物线准线上的射影为H,P为抛物线上一动点.
(1)当|AP|+|PF|取最小值时,求
(2)如果一椭圆E以O、F为焦点,且过点A,求椭圆E的方程及右准线方程;
(3)设是过点A且垂直于x轴的直线,是否存在直线,使得与抛物线C交于两个
不同的点M、N,且MN恰被平分?若存在,求出的倾斜角的范围;若不存在,请
说明理由.

解:(1)由定义知,当P为AH与抛物线的交点时,|PF|=|PH|
此时|AP|+|PF|=|AH|取得最小值4………………4分
………………6分
(2)由(1)知,椭圆E的焦点为O(0,0),F(2,0)
故中心为(1,0).

所求椭圆方程为………………8分
右准线方程为………………10分
(3)由条件知,过A且与x轴垂直的直线
设满足条件的直线存在,并设其方程为
代入………………①
与C交于不同的两点M、N,故方程①的
………………12分


故直线存在,其倾斜角的取值范围为…………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的方程为y=x2,过(0,1)点的直线l与C相交于点A,B,证明:OA⊥OB(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知抛物线C的方程为y2=2px(p>0),直线:x+y=m与x轴的交点在抛物线C准线的右侧.
(Ⅰ)求证:直线与抛物线C恒有两个不同交点;
(Ⅱ)已知定点A(1,0),若直线与抛物线C的交点为Q,R,满足
AQ
AR
=0
,是否存在实数m,使得原点O到直线的距离不大于
2
4
,若存在,求出正实数p的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py(p>0),焦点F为 (0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=2px(p>0且p为常数),过焦点F作直线与抛物线交于A(x1,y1),B(x2,y2
①求证:4x1x2=p2
②若抛物线C的准线l与x轴交于N点且AB⊥AN,求|x1-x2|

查看答案和解析>>

同步练习册答案